
Max-Diversity Orthogonal Regrouping of MBA
Students

using a GRASP/VND Heuristic

Mat́ıas Banchero1, Franco Robledo1, Pablo Romero1, Pablo Sartor2, and
Camilo Servetti1

1 Instituto de Computación, INCO
Facultad de Ingenieŕıa - Universidad de la República

Montevideo Uruguay
(matias.banchero,frobledo,promero,camilo.servetti)@fing.edu.uy

2 IEEM Business School
Universidad de Montevideo. Lord Pondomby 2542

psartor@um.edu.uy

Montevideo, Uruguay

Abstract. Students from Master in Business Administration (MBA)
programs are usually split into teams. Many schools rotate the teams at
the beginning of every term, so that each student works with a different
set of peers during every term. Diversity within every team is desirable
regarding gender, major, age and other criteria. Achieving diverse
teams while avoiding -or minimizing- the repetition of student pairs is a
time-consuming complex task for MBA Directors.

The Max-Diversity Orthogonal Regrouping (MDOR) problem is here
introduced, where the goal is to maximize a global notion of diversity,
considering multiple stages (i.e., terms) and intra-diversity within the
teams. A hybrid GRASP/VND heuristic combined with Tabu Search
is developed for its resolution. Its effectiveness has been tested in real-
life groups from the MBA program offered at IEEM Business School,
Universidad de Montevideo, Uruguay, with a notorious gain regarding
team diversity and repetition level.

Keywords: MBA Teams, Orthogonal Regrouping, Diversity, GRASP,
VND.

1 Motivation

The collaborative team-formation and staffing/scheduling problems in
workforce management is of paramount importance in projects deployment and
large/scale corporations. Given the intrinsic hardness of multidisciplinary
team-formation and clustering techniques, it is necessary to develop tools for
this task. In this work we are focused on a maximum diversity regrouping
assignment of MBA students; nevertheless, the reader can find potential

applications in similar clustering problems. Experience shows that the student
skills and learning process benefit significantly from highly-diverse teams when
regarding prior experience, age, gender, major and other features. MBA
programs are usually split into four to six terms. Many MBA rotate the groups
in every term so that students train their ability to adapt to different groups,
benefit from new points of view and expand their peer network. Creating
highly-diverse teams while keeping at a minimum the repetition of peer-pairs
between terms is a very challenging problem faced by program directors at the
beginning of every trimester.

The contributions of this paper can be summarized in the following items:

1. A novel combinatorial optimization problem called Max-Diversity
Orthogonal Regrouping (MDOR) is here introduced. The goal is to find as
many clusterings as terms, maximizing cluster diversity while keeping at a
minimum the repetitions of pairs.

2. A GRASP/VND methodology combined with Tabu Search is developed.
3. The effectiveness of our proposal is tested with real-life students from the

MBA program offered at IEEM Business School, Universidad de Montevideo,
Uruguay.

The document is organized in the following manner. The related work is
presented in Section 2. A mathematical programming formulation for the
MDOR is introduced in Section 3. A full GRASP/VND heuristic combined
with Tabu Search is presented in Section 4. Computational results based on
real-life students are presented in Section 5. Section 6 contains concluding
remarks and trends for future work.

2 Related Work

We identify the closest works of ours from the scientific literature in [3, 7, 2]. A
simplified model with a large similarity in the team formation is presented in [3],
which considers the dining philosophers problem for the assignment of students
into groups. In [7], the problem is modeled using integer linear programming.
This work considers a centroid for each cluster. Two approaches are studied: the
min-sum approach tries to minimize the distances with respect to the centroid;
the second is a min-max approach whose goal is to minimize the maximum (i.e.,
the worst) distance.

The case-study in [2] consists of the assignment of 235 students to 8
advisors. This work considers integer linear programming, and it is equivalent
to the min-sum approach given by [7]. The problem belongs to the NP-Hard
class, and heuristics are available to tackle it [10]. A hybrid Genetic Algorithm
is proposed in [9]. There, the authors suggest Tabu Search combined with
strategic oscilations. Independently, [12] proposed an artificial bee-workers
approach. In [8], a competitive General Variable Neighborhood Search (GVNS)
is also proposed. An extension of this GVNS is offered in [4], with a Skewed

VNS combined with a Shaking process to better explore the search-space. The
goal in the Orthogonal Regrouping Problem is to partition a given set
repeatedly, in such a way that every pair is included only once in some cluster.
Well known instances have been extensively treated, e.g., the Kirkman’s
Schoolgirl Problem and the Social Golfer Problem.

Here we introduce the MDOR problem, which is suitable to the assignment
of MBA students to teams that are re-built in every term. It is worth to
remark that our approach has potential applications to other scenarios, such as
staffing and scheduling in workforce management [5], team formation models
for collaboration [14], and team-formation algorithms for faultline
minimization [1], among others.

3 Problem

In this section, we describe the main features of our problem, and then we present
a mathematical programming formulation. A brief discussion covers particular
cases, which will be considered to address the problem heuristically.

3.1 Problem Description

Our problem formulation requires a definition of distance between any two items.
In the context of grouping MBA students, the distance between two students
would represent how different they are in terms of a set of criteria (age, type
of major, gender, work experience, admission test score, etc.) that the MBA
Director chooses. In the case of the real-life sets used in our test, the criteria are:

– Career (subdivided in percentage of Social Sciences, Natural and Exact
Sciences content).

– Score in the Admission Test.
– Residence (urban or countryside).
– Gender.
– Age.

Career is split into three attributes in [0, 1] which account for the relative levels
of Social Sciences, Natural and Exact Sciences. The score in the Admission
Test and the Age are natural numbers, while the remaining attributes assume
binary domain. Once the attributes are selected, a distance function between
the different individuals dij must be specified. In what follows, the normalized-
Euclidean distance is considered:

d(x, y) =
‖x− y‖2

maxu6=v‖u− v‖2
, (1)

where the distance between each pair of students is found by a numerical
assignment to the different attributes (i.e., different coordinates). Observe that
this normalization implies that 0 ≤ d(x, y) ≤ 1 for all the pairs of students x
and y.

3.2 Problem Formulation

Consider the following variables:

– N the number of students.

– G the number of teams (clusters).

– K the number of attributes.

– M the number of students per team: M = N
G (if integer).

– S the number of terms (clusterings).

– dij the distance between the students i and j.

– R is the number of terms that any pair of students can share (R=1 for a
SGP instance).

Consider the set of binary decision variables xigs, such that xigs = 1 if and
only if the student i is assigned to the group g in term s, and xigs = 0 otherwise.
We introduce the MDOR problem as the following Integer Quadratic Problem:

max
xigs

S∑
s=1

G∑
g=1

N−1∑
i=1

N∑
j=i+1

dijxigsxjgs, (2)

s.t.

G∑
g=1

xigs = 1, ∀(i, s) ∈ {1, . . . , N} × {1, . . . , S} (3)

N∑
i=1

xigs = M, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (4)

S∑
s=1

G∑
g=1

N−1∑
i=1

N∑
j=i+1

xigsxjgs ≤ R, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (5)

xigs ∈ {0, 1},∀(i, g, s) ∈ {1, . . . , N} × {1, . . . , G} × {1, . . . , S} (6)

The goal is to maximize the diversity-sum among all clusters and clusterings,
where the intra-cluster diversity is precisely the distance-sum among all the pairs
of that cluster. Constraint 3 states that each student is included in a single team.
Constraint 4 states that the teams have precisely M students. Constraint 5 limits
the number of times any pair of students can meet in different terms. Finally,
Constraint 6 defines the binary domain for the decision variables.

3.3 Discussion

Observe that the previous MDOR model is adequate when M = N
G is an

integer. Next we comment on how to overcome this limitation and to minimize
the number of repetitions as well.

Number of Students per Group If M = N
G is not an integer, we can replace

Constraints 4 with a minimal variation. In fact, consider the Euclidean division:
N = G ×M + r for some remainder r : 0 ≤ r < G. We can arrange M + 1
students in r groups, and M students in the remaining G− r groups.

As a more general setting, pick two vectors a and b representing lower and
upper-bounds on the number of students per group. Replace Constraints 4 with:

G∑
g=1

xigs ≥ ag, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}

G∑
g=1

xigs ≤ bg, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}.

Avoiding Repetitions Avoiding repetitions is not always possible, depending
on the parameters G,M,S of a MDOR instance. Even when it is possible, no
polynomial-complexity algorithm is known for the general case; variations like
the SGP-completion problem are known to be NP-complete [13, 6].

Let us consider a certain student, and let ws be the number of feasible peer
students for him/her during the term s. The sequence ws satisfies the following
recurrence:

w1 = N − 1;

wi+1 = wi − (M − 1),

since M−1 new students are met in the last term s = i. A straight solution of the
recurrence leads to ws = N − 1− (s− 1)(M − 1). When the courses are finished
we get s = S and wS = N−1−(S−1)(M−1). Hence, if N < (S−1)(M−1)+1,
it is impossible to avoid repetitions.

Two possible heuristic approaches arise to cope with the repetition
problem. One might build high-diversity solutions while controlling the
repetition level. Alternative, one might generate repetition-free solutions and
then choose and/or modify them seeking for improved diversity. In this paper
we introduce an algorithm that follows the first approach. A parameter
GLOBAL REP is set; once more than GLOBAL REP times a solution is
generated including a repetition for a certain pair, the algorithm accepts the
repetition.

4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a
powerful multi-start process which operates in two phases. A feasible solution
is built in a first phase, whose neighborhood is then explored in the Local
Search Phase. The second phase is usually enriched by means of different

variable neighborhood structures. For instance, VND explores several
neighborhood structures in a deterministic order. Its success is based on the
simple fact that different neighborhood structures do not usually have the
same local minimum. Thus, the resulting solution is simultaneously a locally
optimum solution under all the neighborhood structures. The reader is invited
to consult the comprehensive Handbook of Heuristics for further
information [11]. Here, we develop a GRASP/VND methodology.

4.1 GRASP/VND Methodology for the MDOR

We followed a traditional VND flow diagram, that consists of three local searches:

– Insert: moves a student to another group.
– Swap: swaps two students from different groups.
– 3− Chain: exchanges three students from three different groups.

The most simple local searches appear at the beginning. Therefore, the order is
respectively Insert, Swap and 3 − Chain. A greedy randomized Construction
phase takes effect first.

To speed-up the evaluation of the objective function, the internal structures
in the main algorithm consider two vectors:

– xc[i]: current group for student i, and
– sdc[i][g]: current sum-diversity between the student i and his/her peers in

group g.

Observe that sdc[i][g] =
∑

j:x[j]=g di,j , and if we link the students in a graph
with link-weights di,j , by Handshaking Lemma we get that the objective is:

f(xc) =
1

2

N∑
i=1

sdc[i][xc[i]]. (7)

In the following, the details of the construction and local searches are
presented, in the respective order.

4.2 Construction Phase

The search space is the set of all student assignments to the groups, where
each student belongs to exactly one group. A feasible solution also meets the
respective lower and upper bounds ag and bg. In our Construction phase, an
iterative student insertion into groups takes effect, meeting the lower bounds
ag. Finally, in order to fulfill feasibility, all the students are assigned in some
group, meeting the upper-bound bg. Two factors are considered for these group-
insertions: diversity and repetitions. In this construction phase, the priority is
given to repetitions. Therefore, a memory with the previous terms is used, and
if two assignment have identical number of repetitions, the assignment with

maximum diversity is chosen. During the process, the diversity per group g for
some student x is found using the following expression:

d′(x, g) =
∑
y∈g

d(x, y)

|g|
.

Observe the relation with the cardinality |g|; otherwise, groups with larger
number of students are always preferred.

Algorithm 1 Construction(studentGroup, a, b, atrsStandard, repMatrix)

1: studentVector← {1, 2, .., N}
2: groupVector← {1, 2, .., N}
3: assignOneRandomStudentToEachGroup(studentGroup, repMatrix)
4: while groupV ector 6= {} do
5: selGroup← assignGroupToStudForMinRepetitions(
6: studentGroup, repMatrix)
7: if groupCount[selGroup] = a[selGroup] then
8: groupVector← groupVector− selGroup
9: end if

10: end while
11: for g ← 1 to G do
12: if groupCount[g] = b[g] then
13: groupVector← groupVector− g
14: end if
15: end for
16: while groupV ector 6= {} do
17: selGroup← assignGroupToStudentForMinRepetitions(
18: studentGroup, repMatrix)
19: if groupCount[selGroup] = b[selGroup] then
20: groupVector← groupVector− selGroup
21: end if
22: end while

Fig. 1. Construction Phase

The following variables are considered during the Construction phase:

– studentGroup[s]: the group assigned to student s ∈ {1, . . . , N}.
– atrsStandard[i, j]: the value of attribute j ∈ {1, . . . ,K} for the student i.
– groupCount[g]: the number of students in the group g ∈ {1, . . . , G}.

The following functions are also considered:

– assignOneRandomStudentToEachGroup(): assigns, in each group, one
random student uniformly picked at random.

– assignGroupToStudForMinRepetitions(): picks a random student, and
assigns him/her to the group that leads to the least number of repetitions.
Ties are solved using the maximum diversity.

4.3 Insertion

In this local search, a student i is moved from a different group. We remark that
a local search takes place whenever the resulting solution is both better and
feasible. To test feasibility, we just check the lower and upper bounds for the old
and the new group, respectively. The difference in the objective is the change in
the diversity:

f(xn)− f(xc) = sdc[i][g2]− sdc[i][g1],

being xn the new solution and xc the current solution.

Algorithm 2 Insertion(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)

1: res← false
2: for i← 1 to N do
3: for g ← 1 to G do
4: if studentGroup[i] 6= g
5: and groupCount[g] < b[g] and
6: groupCount[studentGroup[i]] > a[g] then
7: diffSol← sd[i][g]− sd[i][studentGroup[i]]
8: if diffSol > 0 and updateTabuSearchMatrix(
9: i, g, studentGroup, tabuMatrix) then

10: studentGroup[i]← g
11: solCurrent← solCurrent + diffSol
12: updateSD(studentGroup, sd, i, g)
13: res← true
14: end if
15: end if
16: end for
17: end for
18: return res

Fig. 2. Local Search I: Insertion

4.4 Swap

In this local search, two students i and j, originally belonging to different groups
gi 6= gj , are exchanged, and the difference in the objective is:

f(xn)− f(xc) = (sdc[i][gj]− sdc[i][gi]) + (sdc[j][gj]− sdc[j][gi])− 2dij

A pseudocode for Swap is presented in Figure 3.

Algorithm 3 Swap(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)

1: res← false
2: for i← 1 to N do
3: for j ← 1 to N do
4: if studentGroup[i] 6= studentGroup[j] then
5: diffSol← sd[i][studentGroup[j]] + sd[j][studentGroup[i]]
6: −sd[i][studentGroup[i]]− sd[j][studentGroup[j]]− 2di,j
7: if diffSol > 0
8: and updateTabuSearchMatrix(
9: i, studentGroup[j], studentGroup, tabuMatrix)

10: and updateTabuSearchMatrix(
11: j, studentGroup[i], studentGroup, tabuMatrix) then
12: oldI ← studentGroup[i]
13: oldJ ← studentGroup[j]
14: studentGroup[i]← oldJ
15: studentGroup[j]← oldI
16: updateSD(studentGroup, sd, i, studentGroup[i])
17: updateSD(studentGroup, sd, j, studentGroup[j])
18: solCurrent← solCurrent + diffSol
19: res← true
20: end if
21: end if
22: end for
23: end for
24: return res

Fig. 3. Local Search II: Swap

4.5 3-Chain

Consider three different students i, j y k belonging to three different groups gi,
gj and gk. Student i is moved to gj , j is moved to gk and k is moved to gi:

f(xn)− f(xc) = (sdc[i][gj]− sdc[i][gi]) + (sdc[j][gk]− sdc[j][gj]) + (sdc[k][gi]− sdc[k][gk])

− (dij + djk + dki)

Algorithm 4 3−Chain(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)

1: res← false
2: for i← 1 to N do
3: for j ← 1 to N do
4: for k ← 1 to N do
5: if studentGroup[i] 6= studentGroup[j]
6: and studentGroup[j] 6= studentGroup[k] then
7: diffSol← sd[i][studentGroup[j]] + sd[][studentGroup[k]]
8: +sd[k][studentGroup[i]]− sd[i][studentGroup[i]]
9: −sd[j][studentGroup[j]]− sd[k][studentGroup[k]]

10: −2di,j − 2dj,k − 2dk,i
11: if diffSol > 0
12: and updateTabuSearchMatrix(
13: i, studentGroup[j], studentGroup, tabuMatrix)
14: and updateTabuSearchMatrix(
15: j, studentGroup[k], studentGroup, tabuMatrix)
16: and updateTabuSearchMatrix(
17: k, studentGroup[i], studentGroup, tabuMatrix) then
18: oldI ← studentGroup[i]
19: oldJ ← studentGroup[j]
20: oldK ← studentGroup[k]
21: studentGroup[i]← oldJ
22: studentGroup[j]← oldK
23: studentGroup[k]← oldI
24: updateSD(studentGroup, sd, i, studentGroup[i])
25: updateSD(studentGroup, sd, j, studentGroup[j])
26: updateSD(studentGroup, sd, k, studentGroup[k])
27: solCurrent← solCurrent + diffSol
28: res← true
29: end if
30: end if
31: end for
32: end for
33: end for
34: return res

Fig. 4. Local Search III: 3− Chain

4.6 Shake

In order to increase the diversity in the search-space, a shake process takes place.
Consider a k-neighborhood of Swap operation, this is, an arbitrary application
of k swaps. Shake picks a k-neighbor, and the VND phase is re-started with the
obtained solution, provided that the Tabu List allows for the shake to be done

(i.e., controlling the repetitions threshold). Figure 5 presents a full pseudocode
for Shake. In the general algorithm, k starts equal to a parameter K MIN and
is increased by a second parameter K STEP until the solution is improved or
up to a third parameter K MAX.

Algorithm 5 Shake(studentGroup, k, sd, solCurrent, atrsStandard, tabuMatrix)

1: while k > 0 do
2: randomI ← getRandom(N)
3: randomJ ← getRandom(N)
4: if studentGroup[randomI] <> studentGroup[randomJ] then
5: if updateTabuSearchMatrix(randomI,
6: studentGroup[randomJ], studentGroup, tabuMatrix)and
7: updateTabuSearchMatrix(randomJ,
8: studentGroup[randomI], studentGroup, tabuMatrix) then
9: oldI ← studentGroup[i]

10: oldJ ← studentGroup[j]
11: studentGroup[i]← oldJ
12: studentGroup[j]← oldI
13: updateSD(studentGroup, sd, i, studentGroup[i])
14: updateSD(studentGroup, sd, j, studentGroup[j])
15: k ← k − 1
16: end if
17: end if
18: end while
19: updateSolCurrent(solCurrent, sd, studentGroup
20: return res

Fig. 5. Perturbation Step: Shake

4.7 Main Algorithm

The main algorithm iterates over all terms. For each one, it starts by invoking
Construction a number of times MAX TRIES that acts as a parameter. The
most diverse solution is passed to the following step, where the following cycle
is repeated a number of times T MAX (another parameter): Shake - Insertion
- Swap - 3 − Chain. The best solution found (the most diverse clustering) is
chosen for the term, moving on to the next one.

5 Computational Results

We carried out a comparison between the algorithm here introduced and the
manual team assignment that was done in real-life with two IEEM Business
School MBA cohorts from 2014 and 2015: “MBA1314” (34 students, 6 teams)
and “MBA1415” (45 students, 8 teams).

The algorithm was coded in C++ and executed in a home-PC (Intel-core i7
2.2GHz, 8GB RAM). One hundred independent iterations were run (since
GRASP is a multi-start metaheuristic) and the best solution was finally
returned. As a preliminary stage, an adjustment of all the parameters was
performed running several experiments. MAX TRIES and T MAX were set
to 100 and 500 respectively. The Shake parameters were finally set to
K MIN = K STEP = 1 and K MAX = 3. There is a trade-off between
diversity and number of repetitions. A larger freezing-factor GLOBAL REP
in the Tabu List implies a lower level of diversity as one test with MBA1415
shows in Table 1. All results next reported were obtained with Tabu-list
parameter to a freezing factor of 285.000 to keep repetitions at a minimum
level.

Table 1. Diversity and repetitions per term, MBA1415: manual vs algorithm.

Table 2 compares the diversity achieved by our algorithm vs the manual team
assignment for the two cohorts and the five terms that the program spans; Table 3
does a similar comparison for repetitions per term. Our algorithm consistently
outperformed the manual assignment when considering diversity and repetitions.
It also took less time, since the longest execution took 50 minutes, while the
manual assignment was reported to take more than 4 hours for each cohort.

6 Conclusions and Trends for Future Work

A novel combinatorial optimization problem is introduced named Max-Diversity
Orthogonal Regrouping (MDOR). It was conceived to cope with the problem of

Table 2. Diversity per term, MBA1314 and MBA1415: manual vs algorithm.

Table 3. Repetitions per term, MBA1314 and MBA1415: manual vs algorithm.

partitioning MBA cohorts into high-diversity teams, rotating the teams in every
term and keeping under a given (low) threshold the repetitions. Nevertheless, the
MDOR has potential applications in workforce management or team formation
models for collaboration. The mathematical programming formulation is similar
to a quadratic assignment problem, and the MDOR is presumably hard, even
though a formal proof is not available in the literature.

A GRASP/VND methodology enriched with Tabu Search is here proposed
in order to address the MDOR. A Shaking process in order to further explore
the search-space is also included. The tests presented show that this algorithm
produces clusterings faster, with fewer repetitions and higher diversities than the
manually-built clusters applied to the real-life cohorts of the test cases. Future
work includes formally establishing the computational complexity of the MDOR,
and comparing our GRASP/VND methodology with alternative heuristics.

7 Acknowledgements

This work is partially supported by Project ANII FCE 1 2019 1 156693 Teoŕıa y
Construcción de Redes de Máxima Confiabilidad, MATHAMSUD 19-MATH-03

Rare events analysis in multi-component systems with dependent components and
STIC-AMSUD ACCON Algorithms for the capacity crunch problem in optical
networks.

References

1. Sanaz Bahargam, Behzad Golshan, Theodoros Lappas, and Evimaria Terzi.
A team-formation algorithm for faultline minimization. Expert Systems with
Applications, 119:441 – 455, 2019.

2. B. M. Baker and C. Benn. Assigning pupils to tutor groups in a comprehensive
school. Journal of the Operational Research Society, 62, 2001.

3. Joyendu Bhadurya, E. Joy Mightyb, and Hario Damar. Maximizing workforce
diversity in project teams: a network flow approach. Omega, 28, 2000.

4. Jack Brimberg, Nenad Mladenovic, and Dragan Uroevic. Solving the maximally
diverse grouping problem by skewed general variable neighborhood search.
Information Sciences, 295, 2015.

5. Philippe [De Bruecker], Jorne [Van den Bergh], Jeroen Belin, and Erik
Demeulemeester. Workforce planning incorporating skills: State of the art.
European Journal of Operational Research, 243(1):1 – 16, 2015.

6. Charles J. Colbourn. The complexity of completing partial latin squares. Discrete
Applied Mathematics, 8(1):25 – 30, 1984.

7. J. Desrosiers, N. Mladenovi, and D. Villeneuve. Design of balanced mba student
teams. Journal of the Operational Research Society, 56, 2005.

8. Uroevic Dragan. Variable neighborhood search for maximum diverse grouping
problem. Yugoslav Journal of Operations Research, 24, 2014.

9. Z. P. Fan, Y. Chen, J. Ma, and S. Zeng. A hybrid genetic algorithmic approach
to the maximally diverse grouping problem. Journal of the Operational Research
Society, 62, 2011.

10. Thomas A. Feo and Mallek Khellaf. A class of bounded approximation algorithms
for graph partitioning. Networks, 20, 1990.

11. Rafael Mart, Panos M. Pardalos, and Mauricio G. C. Resende. Handbook of
Heuristics. Springer Publishing Company, Incorporated, 1st edition, 2018.

12. F. J. Rodriguez, M. Lozano, C. Garca-Martnez, and J. D. Gonzlez. An artificial
bee colony algorithm for the maximally diverse grouping problem. Information
Sciences, 230, 2013.

13. Markus Triska. Solution methods for the social golfer problem. Information
Sciences, 295, 2008.

14. Hyeongon Wi, Seungjin Oh, Jungtae Mun, and Mooyoung Jung. A team formation
model based on knowledge and collaboration. Expert Systems with Applications,
36(5):9121 – 9134, 2009.

