
A GRASP/VND Heuristic
for the Heterogeneous Fleet

Vehicle Routing Problem with Time Windows

Lućıa Barrero, Franco Robledo,
Pablo Romero, and Rodrigo Viera

Instituto de Computación, INCO
Facultad de Ingenieŕıa - Universidad de la República

Montevideo Uruguay
(lucia.barrero,frobledo,promero,rodrigo.viera)@fing.edu.uy

Abstract. The Heterogeneous Fleet Vehicle Routing Problem with
Time Windows (HFVRPTW) is here introduced. This combinatorial
optimization problem is an extension of the well-known Vehicle
Routing Problem (VRP), which belongs to the NP-Hard class. As a
corollary, our problem belongs to this class, a fact that promotes the
development of approximative methods.
A mathematical programming formulation for the HFVRPTW is
presented, and an exact solution using CPLEX is performed. A
GRASP/VND methodology is also developed, combining five different
local searches. The effectiveness of our proposal is studied in relation
with the exact solver. Our proposal outperforms the exact CPLEX in
terms of CPU times, and finds even better solutions under large-sized
instances, where the exact solver halts after ten hours of continuous
execution.

Keywords: Combinatorial Optimization Problem, Vehicle Routing
Problem, HFVRPTW, Computational Complexity, GRASP, VND.

1 Motivation

The transport industry employs more than 10 million people and it represents
roughly the 5% of the Gross Domestic Product (GDP) of the European Union.
Furthermore, logistics such as transport and storage account for 10%-15% of
the cost of a finished product. In practice, this means that even a small relative
reduction in the cost of logistics and transportation means huge savings.

Usually, large-scale corporations in the transport sector are mostly dedicated
to savings, and an efficient delivery of goods and services. However, transport
also represents an important source of CO2 emissions, and traffic congestion. In
synthesis, a smart vehicle routing engineering is not only meaningful in terms of
savings, but also implies a responsible care of the environment.

Operational researchers are engaged with society, and try their best to
develop mathematical models that are suitable for realistic transportation

problems. A celebrated combinatorial problem is known as the Traveling
Salesman Problem, or TSP. We are given non-negative costs in the edges of a
complete network, and the goal is to find the cheapest Hamiltonian tour (i.e.,
visiting all the nodes of the network). The decision version for the TSP belongs
to the class of NP-Complete problems, and it is included in Karp list [8]. A
natural generalization is the Vehicle Routing Problem, or VRP. In the VRP, we
are given a fleet of vehicles, and we should determine the optimal set of routes
in order to serve a given number of customers, starting and ending at the
depot. The reader can appreciate that the TSP is a special VRP with a single
vehicle; thus, the VRP belongs to the NP-Hard class. Given its paramount
importance, several variations in the basic VRP model appear in the literature,
adding time-windows for customer delivery, heterogeneous fleets, one-way or
two-way routes, dynamic demands, among many others. The reader can
consult the recent survey for the different variants of the VRP and its
applicability to different contexts [9].

To the best of our knowledge, there is no model that simultaneously combines
heterogeneous fleets and time-windows, with a penalty factor due to overtime.
The contributions of this paper can be summarized in the following items:

1. The Heterogeneous Fleet Vehicle Routing Problem with Time Windows
(HFVRPTW) is introduced.

2. We formally prove that the HFVRPTW belongs to the NP-Hard class.
3. As a consequence, a GRASP/VND methodology is proposed.
4. A novel mathematical programming formulation for the HFVRPTW is

presented. It represents an adaptation of the previous formulation proposed
in [7], adding a penalty due to overtime.

5. The effectiveness of our proposal with respect to an exact solution
implemented in CPLEX is studied. The activity of the different local
searches of our GRASP/VND methodology is also studied.

The document is organized in the following manner. The related work is
presented in Section 2. A formal description for the HFVRPTW is presented
in Section 3; its NP-Hardness is also established. A GRASP/VND solution is
introduced in Section 4. Numerical results are presented in Section 5. Section 6
contains concluding remarks and trends for future work.

2 Related Work

The classical VRP is presented by Dantzig as a generalization of the TSP [4]. The
problem is there motivated by fuel distribution, trying to find the optimal routing
of a fleet between a depot and several stations. In general, the VRP consists of
how to share customers geographically distributed by a given fleet of vehicles,
based on one or multiple depots. The goal is to fulfill the customer demands,
finding adequate routes starting and ending at the depot. Rapidly, the VRP
found an impressive diversity of applications, ranging from transport network
design to efficient garbage collectors. Current VRP models include more realistic

assumptions (such as traffic congestion and time-windows for the customers),
given the greater possibilities in processing resources. In [1], Baldacci presents a
framework for exact algorithms useful for several variations of the VRP, such as
capacitated VRP, VRP with Time Windows (VRPTW), pick-up and delivery,
multi-depot VRP, among others. In the Heterogeneous Fleet VRP, we are given
vehicles with different capacities, and the goal is to design a minimum cost
solution meeting the customer demands, starting and ending at the central depot.
A fixed cost is associated to the vehicle-type, while a variable cost is proportional
to the distance of the tours.

An exact Branch and Cut solution for the HFVRP is proposed in [11],
adapting the most competitive exact algorithms for the problem such as route
enumeration and extended capacity cuts for large-sized instances.

Other works address the VRP with Time-Windows (VRPTW), where the
TW have either soft or hard constraints. In the hard constraint, an early vehicle
can wait until the customer is available. In a soft constraint, a penalty is carried
to the objective when the constraint is not satisfied. Historical works for the
soft VRPTW show that an incorrect usage of a Tabu Search the TW can have
a negative impact in the cost [10, 14, 17]. A hybrid solution for the VRPTW is
proposed in [16], that jointly considers Large Neighborhood Search (LNS) and
a Bat Algorithm (BA), inspired by the eco-location of bats. The results were
satisfactory, under benchmarks with 100 customers.

In [2], a two-phase solution combines a Construction phase with Tabu
Search, to avoid locally optimum solutions. The solution reduce the distances,
in a practical industrial application. A hierarchic cluster-first route-second
solution for a large super-market chain is proposed in [3], with remarkable
benefits with respect to a naive solution.

In this work, we combine Heterogeneous Fleet with a new concept of soft
constraint with overtime. Our formulation is adapted from the mathematical
programming presented in [7]. The reader is invited to consult the recent review
on the VRP for other variations of this problem [9].

3 Problem and Complexity

In this section, a formal combinatorial optimization problem is introduced. The
hardness of the problem is also established.

3.1 Formulation

The exact formulation is based on the integer linear programming model defined
in [7]. However, we consider flexible time-windows instead, where delays are
penalized with a cost (i.e,, an additive term in the objective function). Consider
a complete graph G = (V,E) where:

– V = {0, 1, . . . , n} , being 0 the depot and N = {1, ..., n} the customers.
– E = {(i, j) : 0 ≤ i, j ≤ n, i 6= j} represent the links between the nodes.

– tij is the required time to cross the link (i, j).

All the customers must be visited, and the following information is known
for each customer i ∈ N :

– di is a fixed demand for customer i.
– si represents the required time for a vehicle to service the customer i.
– [ei, li] is the time-window (available and deadline) for customer i. This

window is not a hard constraint (a penalty occurs if it is not respected).
– oti is the overtime, or the tolerance after the deadline. It is found with the

following expression: oti = ω(li − ei) for some known factor ω : 0 ≤ ω ≤ 1.
The extended Time Window (TW) is then [ei, li + oti]. A penalty occurs if
the vehicle meets customer i during the interval [li, li + oti], as shown in red
color in Figure 1.

Fig. 1. Original and Extended Time-Windows.

With respect to the depot, we know that:

– [e0, l0] = [E,L] is the time-window for the depot.
– d0 = s0 = 0, since in the depot there is no demand nor service.

The fleet is modeled as K = {1, ..., k}, C represents the vehicle-types, and
Sc the set of c-type vehicles. For each vehicle, we are given:

– qc is the capacity.
– fc is its fixed-cost.
– αc is its variable-cost.
– nc is the number of available type-c vehicles.

We consider the following set of decision variables:

– xkij = 1 iff the vehicle k visits the link (i, j); 0 otherwise.
– aik: time which the vehicle k reaches the customer i.
– oik: overtime of vehicle k for the customer i.

We also assume that the following parameters are known:

– M = max
(i,j∈V)

(li + oti + tij + si − ej): represents the longest time consumed

between any two customers.
– ρ: represents the penalty associated to overtime.

The HFVRPTW can be formulated as follows:

min
∑
c∈C

fc
∑
k∈Sc

∑
j∈N

xk0j +
∑
c∈C

αc

∑
k∈Sc

∑
i,j∈V,
i 6=j

tijx
k
ij +

∑
k∈K,i∈N

oik ∗ ρ (1)

s.t.: ∑
k∈K

∑
j∈V,
i 6=j

xkij = 1 ∀ i ∈ N (2)

∑
j∈N

xk0j ≤ 1 ∀ k ∈ K (3)

∑
i∈N

xki0 ≤ 1 ∀ k ∈ K (4)

∑
i∈V

xkij =
∑
i∈V

xkji ∀ j ∈ V, k ∈ K (5)

∑
i∈N

di
∑
j∈V,
i 6=j

xkij ≤ qc ∀ k ∈ Sc, c ∈ C (6)

aik + si + tij −M(1− xkij) ≤ ajk ∀ k ∈ K, i ∈ N, j ∈ V, i 6= j (7)

t0i ∗ xk0i ≤ aik ∀ k ∈ K, i ∈ N (8)

aik ≤ (li + oti)
∑
j∈V,
i 6=j

xkij ∀ k ∈ K, i ∈ N (9)

ei
∑
j∈V,
i 6=j

xkij ≤ aik ≤ (li + oti)
∑
j∈V,
i 6=j

xkij ∀ k ∈ K, i ∈ N (10)

E ≤ a0k ≤ L+ ot0 ∀ k ∈ K (11)∑
k∈Sc

∑
j∈N

xk0j ≤ nc ∀ c ∈ C (12)

oik ≥ max(0, aik − li) ≥ 0 ∀ k ∈ K, i ∈ V (13)

aik ≥ 0 ∀ k ∈ K, i ∈ N (14)

xkij ∈ {0, 1} ∀ k ∈ K, (i, j) ∈ E (15)

The objective function 1 is an additive cost, considering fixed and variable
costs in the vehicles, as well as penalties related to overtime. Constraints 2
state that all the customers must be visited by only one vehicle. The set of
Constraints 3, 4 and 5 represent flow conservation, and state that all the vehicles

start and end at the depot. Constraints 6 state that the customer demands
cannot exceed the capacities of the vehicles. Constraints 7 state the precedence
relation between the arrival times of the vehicles to the customers.

Constraints 8 state the first arrival time to the first node in the route. The
set of Constraints 9, 10 and 11 model the time-windows for both the customers
and the depot, while Constraints 12 bounds the number of available vehicles for
each type. Finally, the set of Constraints 13, 14 and 15 define the domain of the
respective decision variables.

3.2 Hardness

The hardness of the corresponding decision version for the HFVRPTW is
straight from the NP-Completeness of Hamiltonian Tour. Recall that a graph
G is Hamiltonian if there exists an elementary cycle C ⊆ G that contains all
the nodes.

Definition 1 (Hamiltonian Tour). Given a simple graph G = (V,E). Is G
Hamiltonian?

It is known that Hamiltonian Tour belongs to the class of NP-Complete
decision problems [5, 8].

Proposition 1. The HFVRPTW belongs to the NP-Hard class.

Proof. By reduction from Hamiltonian Tour. Consider an arbitrary graph G =
(V,E). We will see that there exists a feasible solution for the HFVRPTW whose
cost is not greater than n = |V | if and only if there exists a Hamiltonian tour
for G.

Consider an instance of HFVRPTW with the complete graph Kn as a ground
graph, where n = |V |, a single vehicle with cost α = 1 and sufficient capacity
qc = n rooted at some arbitrary depot v ∈ V , no penalties and customers with
infinite patience. The time to traverse the links (i, j) ∈ E is always ti,j = 1, but
ti,j = n if (i, j) /∈ E. A feasible solution must be a Hamiltonian tour, and its
cost is not greater than n if and only if it is strictly included in G = (V,E).
Therefore, the HFVRPTW is at least as hard as Hamiltonian Tour. �

4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a
powerful multi-start process which operates into two phases. A feasible solution
is built in a first phase, whose neighborhood is then explored in the Local
Search Phase [13]. The second phase is usually enriched by means of different
variable neighborhood structures. For instance, VND explores several
neighborhood structures in a deterministic order. Its success is based on the
simple fact that different neighborhood structures do not usually have the

same local minimum. Thus, the resulting solution is simultaneously a locally
optimum solution under all the neighborhood structures. The reader is invited
to consult the comprehensive Handbook of Heuristics for further
information [6]. Here, we develop a GRASP/VND methodology. The main
building-blocks of our Main algorithm are presented in Figure 2. An arbitrary
input instance I = (G, tij , di, si, ei, li, oti, ω,K, qc, fc, αc, nc) for the
HFVRPTW is considered, where the symbols represent the aforementioned
variables in the problem formulation. Observe that the whole GRASP/VND
solution is executed iter times, and the best solution is returned. The
parameter α ∈ [0, 1] trades greediness for randomization during the
Construction phase, by means of a Restricted Candidate List (RCL). The
VND is composed by five local searches, to know, FleetOpt, Exchange,
Relocate, 2 − opt and 3 − opt, in the respective order. In the following
paragraphs, we describe the Construction phase, as well as the local searches.

Algorithm 1 sol = Main(I, iter, α)

1: i← 0; sol← ∅
2: while i < iter do
3: sol← Construction(I, α)
4: sol← V ND(sol, I, F leetOpt, Exchange,Relocate, 2− opt, 3− opt)
5: if cost(sol) < cost(sol) then
6: sol← sol
7: end if
8: end while
9: return sol

Fig. 2. Pseudocode for the Main algorithm.

4.1 Construction Phase

Figure 3 presents a full pseudocode for the Construction phase. The following
functions are considered:

– GetClients(data): returns the clients in a list for a given dataset.
– SelectV ehicles(vehicles): returns a vehicle that is available, and updates

the number of available vehicles.
– GetCapacity(vehicle): returns the capacity of a given vehicle.
– CreateRoute(vehicle, path): creates a route using the given path. This route

is performed with the given vehicle.
– IsFeasible(route, client): determines whether it is feasible or not to append

the given client at the end of the given route, or not.

Algorithm 2 sol = Construction(instance, vehicles)

1: sol← φ
2: clients← GetClients(instance)
3: newRoute← true
4: while clients 6= φ do
5: candidates← φ
6: if newRoute then
7: path← {depot}
8: vehicle← SelectVehicle(vehicles)
9: q ← GetCapacity(vehicle)

10: route← CreateRoute(vehicles, path)
11: newRoute← false
12: end if
13: for client ∈ clients do
14: if IsFeasible(route, client) then
15: candidates← candidates ∪ {client}
16: end if
17: end for
18: if candidates 6= φ then
19: incr(e) ∀ e ∈ candidates
20: imin ← min{incr(e) : e ∈ candidates}
21: imax ← max{incr(e) : e ∈ candidates}
22: RCL← {e ∈ candidates : incr(e) ≤ imin + α(imax − imin)}
23: client← Random(RCL)
24: path← path ∪ {client}
25: q = q −GetDemand(client)
26: clients← clients\{client}
27: end if
28: if candidates = φ ∨ q = 0 then
29: path← path ∪ {depot}
30: sol← sol ∪ {route}
31: newRoute← true
32: end if
33: end while
34: return sol

Fig. 3. Construction Phase

We need to select vehicles and routes for them, in order to build feasible
solutions. We collect all the customers that were not yet visited in the variable
clients. A metric is considered to decide the priority for the different vehicles.
The route is then constructed, that starts and ends at the depot, for that
vehicle. A Restricted Candidate List (RCL) is built in order to include different

customers in the route, always picking customers from the collection of
non-visited customers in order to meet feasibility. The marginal cost to include
some customer is found using the following expression:

incr = V ariableCost× t+ overtime× penalty + arrival,

being arrival the arrival time at the new candidate. Observe that incr represents
an estimation for the marginal increase in the objective, since we need to adjust
all the time-windows for the other customers. Nevertheless, the marginal costs
are useful to build the RCL, following a classical implementation. We find the
least and the greatest marginal costs imin and imax, and the RCL consists of
the candidates e such that incr(e) ≤ imin + α × (imax − imin), being α ∈
[0, 1] the GRASP parameter that trades greediness for randomization. Finally, a
random member belonging to the RCL is inserted into the partial route, and the
whole collection of non-visited customers are updated accordingly, with a new
evaluation of marginal costs. The route is closed whenever the vehicle capacity
is reached, or when there are no more candidates to be included. In that case,
the depot node is included.

4.2 Local Search Phase - V ND

respective local searches are called in order, after the Construction phase:

1. Fleet− opt
2. Exchange
3. Relocate
4. 2− opt
5. 3− opt

We followed a strict time-complexity order of the local searches, as suggested
in [12]. For practical reasons, we assume that there are more customers than
vehicle-types.

Definition 2 (Fleet-Opt). The goal is to change the vehicles. There are two
different flavors of this local-search:

– Fleet-opt A: given two node-disjoint routes p and q associated to the
respective vehicles vp and vq. We exchange the vehicles, such that vq is
associated to p and vp is associated to q.

– Fleet-opt B: we can replace a given vehicle vp associated to the route p by
some different available vehicle vd.

Definition 3 (Exchange). Consider two node-disjoint routed p and q that
serve two distinct customers i ∈ p and j ∈ q. We literally exchange the
customers as follows. The edges (i − 1, i), (i, i + 1) ∈ p are replaced by
(i− 1, j), (j, i+ 1), and the edges (j − 1, j), (j, j + 1) inq are replaced similarly,
by (j − 1, i), (i, j + 1). Figure 4 illustrates this local search.

Definition 4 (Relocate). Given two node-disjoint routes p and q, and some
customer i that belongs to p. We relocate the customer i to the route q, as follows.
First, replace the edges (i− 1, i) and (i, i+ 1) by (i− 1, i+ 1), and then replace
the edge (j, j + 1) ∈ q by the edges (j, i) and i, j + 1. An illustration is presented
in Figure 5.

Definition 5 (2-opt). Pick two non-adjacent edges (i, i+1) and (j, j+1) from
a fixed tour of a feasible solution, such that i < j. Replace both links by (i, j)
and (i+ 1, j + 1). Figure 6 illustrates this local search in a fixed tour.

Definition 6 (3-opt). Pick three non-adjacent edges (i, j), (k, l) and (m,n).
We can either delete two, or the three edges. In the former, we replace as in
2-opt. In the latter, consider the four non-isomorphic reconstructions of the tour
illustrated in Figure 7.

The reader can appreciate that 3-opt is dominant, with cubic time-complexity
in terms of the number of links.

Fig. 4. Exchange

Fig. 5. Relocate

Fig. 6. 2-opt

Fig. 7. 3-opt

5 Numerical Results

In order to understand the effectiveness of our proposal, an extensive
computational study was carried out using our Main algorithm versus the
exact CPLEX solver, with an halting time of 10 hours. Therefore, CPLEX
returns either the globally optimum solution, or the best solution found so far
after 10 hours. The experimental analysis was carried out in a Home-PC (Intel

Core i5 2.7 GHz). Since there are no benchmark for our specific problem we
adapted Solomon instances [15], adding penalties and time-windows, using
ω = 0.3. This means that the time-window is enlarged a factor 1.3, but a
penalty is assumed in the last portion of the window. Since the HFVRPTW
with penalties in delays is novel, we cannot perform a fair comparison with
previous proposals. Instead, we study the effectiveness of our methodology
with respect to the exact CPLEX solver, and the activity of the different local
searches. Table 1 shows the activity of the five local searches of our VND.
Exchange and Relocate have the largest activity, followed by 2-opt and 3-opt.
Fleet-opt has the least activity. However, Fleet-opt A has considerable activity
as well in many instances under study. Further experiments show that
Fleet-opt B has large activity when the number of customers is increased to
100 and 200.

Instance
fleet-
optA

fleet-
optB

exch-
ange

relo-
cate

2-opt 3-opt Instance
fleet-
optA

fleet-
optB

exch-
ange

relo-
cate

2-opt 3-opt

HC101 0 0 123 96 0 0 HC201 0 0 28 26 12 0
HC102 0 0 128 93 42 20 HC202 0 0 45 46 28 24
HC103 0 0 90 66 41 25 HC203 0 0 92 102 50 50
HC104 0 0 162 118 75 34 HC204 0 0 64 57 40 28
HC105 0 0 98 74 26 0 HC205 0 0 36 40 29 18
HC106 0 0 53 42 18 0 HC206 0 0 45 51 36 24
HC107 0 0 107 77 43 0 HC207 0 0 40 38 25 19
HC108 0 0 67 54 28 4 HC208 0 0 39 40 30 20
HC109 0 0 138 99 64 19
HR101 66 5 69 45 0 0 HR201 0 0 31 40 29 14
HR102 114 6 144 107 50 27 HR202 0 0 97 140 74 53
HR103 40 1 58 40 23 4 HR203 0 0 71 92 58 41
HR104 62 0 134 90 66 14 HR204 0 0 48 55 32 22
HR105 33 0 50 38 18 0 HR205 0 0 59 78 52 33
HR106 74 2 120 87 55 23 HR206 0 0 49 76 38 26
HR107 69 2 140 109 64 19 HR207 0 0 42 51 29 26
HR108 12 0 58 33 26 8 HR208 0 0 71 85 46 36
HR109 71 0 145 99 67 13 HR209 0 0 48 61 45 32
HR110 31 0 68 51 35 0 HR210 0 0 122 155 90 63
HR111 58 0 126 92 61 20 HR211 0 0 55 71 44 33
HR112 32 0 102 67 43 2

HRC101 43 4 87 43 41 4 HRC201 0 0 53 37 27 6
HRC102 38 1 80 46 37 7 HRC202 0 0 86 57 40 9
HRC103 18 1 65 37 27 5 HRC203 2 1 158 122 74 27
HRC104 26 0 78 47 34 2 HRC204 0 0 185 132 76 19
HRC105 29 1 87 45 39 3 HRC205 0 0 7 58 36 12
HRC106 47 0 152 91 71 12 HRC206 0 0 170 122 86 17
HRC107 19 0 63 38 28 5 HRC207 0 0 62 44 29 15
HRC108 36 0 110 69 52 8 HRC208 0 0 98 69 49 9

Total 256 7 722 416 329 46 Total 2 1 819 641 417 114

Table 1. Activity of the different local searches (instances with 50 customers).

CPLEX GRASP/VND Difference

Instance Cost Cost Gap
Relative

Error

HC101 828.912 936.61 107.70 12.99%
HC102 871.274 887.47 16.20 1.86%
HC103 994.16 887.86 -106.30 -10.69%
HC104 901.258 886.28 -14.98 -1.66%
HC105 832.252 936.34 104.09 12.51%
HC106 805.756 937.79 132.03 16.39%
HC107 872.714 921.04 48.33 5.54%
HC108 903.65 936.91 33.26 3.68%
HC109 1036.794 883.53 -153.26 -14.78%
HC201 691.32 738.45 47.13 6.82%
HC202 645.58 750.25 104.67 16.21%
HC203 828.57 706.99 -121.58 -14.67%
HC204 724.75 674.55 -50.20 -6.93%
HC205 690.93 737.47 46.54 6.74%
HC206 825.22 696.31 -128.91 -15.62%
HC207 843.96 716.15 -127.81 -15.14%
HC208 772.99 719.22 -53.77 -6.96%
HR101 2475.672 2,577.31 101.63 4.11%
HR102 2678.248 2,488.57 -189.67 -7.08%
HR103 2674.69 2,450.45 -224.24 -8.38%
HR104 2463.58 2,285.83 -177.75 -7.21%
HR105 2629.696 2,517.14 -112.56 -4.28%
HR106 2781.796 2,431.01 -350.78 -12.61%
HR107 2578.342 2,338.32 -240.02 -9.31%
HR108 2503.142 2,321.05 -182.09 -7.27%
HR109 2484.816 2,401.86 -82.95 -3.34%
HR110 2658.084 2,359.41 -298.68 -11.24%
HR111 2496.894 2,341.67 -155.22 -6.22%
HR112 2406.202 2,334.26 -71.94 -2.99%

Average - - -155.37 -6.12%

Table 2. CPLEX VS our GRASP/VND proposal (instances with 50 customers).

Tables 2 shows the performance of our proposal with respect to CPLEX
for 50 customers. The bold instances present negative gaps; this means that
our GRASP/VND proposal outperforms CPLEX and, naturally, CPLEX could
not find the globally optimum solution during 10 hours. It is worth to remark
that the average gap is negative, meaning that our proposal outperforms the
solver. Furthermore, the CPU time of our GRASP/VND solution ranges between
seconds and five minutes in the worst cases.

6 Conclusions and Trends for Future Work

Operational researchers are engaged with modeling variations of the celebrated
Vehicle Routing Problem (VRP), given its paramount importance and diverse
applications. Here we introduced a novel Heterogeneous Fleet VRP with Time
Windows (HFVRPTW) version, with penalties due to overtime. The
HFVRPTW belongs to the class of NP-Hard problems, since it subsumes the
Traveling Salesman Problem. This result promotes the development of
approximative algorithms. A GRASP/VND methodology is here proposed,
using five different local searches. Numerical results suggest that the most
simple local searches have more activity; further experiments illustrate that
fleet-opt local search works when the number of customers is increased. The
exact solution show limited applicability, where the optimality is reached only
under small-sized instances.

As future work, we want to introduce key concepts of the VRP and
variations in real-life metropolitan transportation systems. Further, we would
like to explore novel local searches and study different versions of VNS
governed by probabilistic flow diagrams, governed by Markov chains.

7 Acknowledgements

This work is partially supported by Project ANII FCE 1 2019 1 156693 Teoŕıa y
Construcción de Redes de Máxima Confiabilidad, MATHAMSUD 19-MATH-03
Rare events analysis in multi-component systems with dependent components and
STIC-AMSUD ACCON Algorithms for the capacity crunch problem in optical
networks.

References

1. Roberto Baldacci, Enrico Bartolini, Aristide Mingozzi, and Roberto Roberti.
An exact solution framework for a broad class of vehicle routing problems.
Computational Management Science, 7(3):229–268, 2010.

2. Jose Bernal, John Willmer Escobar, and Rodrigo Linfati. A granular tabu search
algorithm for a real case study of a vehicle routing problem with a heterogeneous
fleet and time windows. Journal of Industrial Engineering and Management,
10(4):646, 2017.

3. Serap Ercan Cömert, Harun Reȩit Yazgan, İrem Sertvuran, and Hanife Şengüi. A
new approach for solution of vehicle routing problem with hard time window: an
application in a supermarket chain. Sādhanā, 42(12):2067–2080, 2017.

4. author G. B. Dantzig and author J. H. Ramser. The truck dispatching problem.
Management Science, page 80, 1959.

5. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

6. Pierre Hansen. Variable Neighborhood Search. Springer International Publishing,
Handbook of Heuristics, 2018.

7. Jun Jiang, Kien Ming Ng, Kim Leng Poh, and Kwong Meng Teo. Vehicle routing
problem with a heterogeneous fleet and time windows. Expert Systems with
Applications, 41(8):3748 – 3760, 2014.

8. Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

9. A. Mor and M. G. Speranza. Duality in nonlinear programming: a simplified
applications-oriented development. 4OR - A Quarterly Journal of Operations
Research, 18(2):129–149, 2020.

10. Yuichi Nagata, Olli Brysy, and Wout Dullaert. A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows. Computers
& Operations Research, 37(4):724 – 737, 2010.

11. Artur Pessoa, Ruslan Sadykov, and Eduardo Uchoa. Enhanced branch-cut-and-
price algorithm for heterogeneous fleet vehicle routing problems. European Journal
of Operational Research, 2018.

12. Petrică C. Pop, Levente Fuksz, and Andrei Horvat Marc. A variable neighborhood
search approach for solving the generalized vehicle routing problem. In Marios
Polycarpou, André C. P. L. F. de Carvalho, Jeng-Shyang Pan, Micha l Woźniak,
Héctor Quintian, and Emilio Corchado, editors, Hybrid Artificial Intelligence
Systems, pages 13–24, Cham, 2014. Springer International Publishing.

13. Mauricio Resende and Celso Ribeiro. Optimization by GRASP. Springer, 2016.
14. Michael Schneider, Bastian Sand, and Andreas Stenger. A note on the time travel

approach for handling time windows in vehicle routing problems. Computers &
Operations Research, 40(10):2564 – 2568, 2013.

15. Marius M Solomon. On the worst-case performance of some heuristics for the
vehicle routing and scheduling problem with time window constraints. Networks,
16(2):161–174, 1986.

16. A. Taha, M. Hachimi, and A. Moudden. A discrete bat algorithm for the vehicle
routing problem with time windows. In 2017 International Colloquium on Logistics
and Supply Chain Management (LOGISTIQUA), pages 65–70, April 2017.

17. Duygu Taş, Ola Jabali, and Tom Van Woensel. A vehicle routing problem with
flexible time windows. Computers & Operations Research, 52:39–54, 2014.

