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Abstract. In Marketing, the goal is to understand the psychology of
the customer in order to maximize sales. A common approach is to
combine web semantic, sniffing, historical information of the customer,
and machine learning techniques.
In this paper, we exploit the historical information of sales in order to
assist product placement. The rationale is simple: if two items are sold
jointly, they should be close. This concept is formalized in a combinatorial
optimization problem, called Max Cut-Clique or MCC for short.
The hardness of the MCC promotes the development of heuristics. The
literature offers a GRASP/VND methodology as well as an Iterated Local
Search (ILS) implementation. In this work, a novel Genetic Algorithm is
proposed to deal with the MCC . A comparison with respect to previous
heuristics reveals that our proposal is competitive with state-of-the-art
solutions.
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1 Motivation

Large-scale corporations keep massive databases from their customers.
Nevertheless, decision-makers and practitioners sometimes do not have the
knowledge to combine Machine Learning techniques with Optimization, in
order to exploit the benefits of Big Data.

An effective dialogue between academics and practitioners is crucial [7]. A
bridge between the science-practice division can be found in Market Basket
Analysis, or MBA [1]. In synthesis, MBA is a Data Mining technique
originated in the field of Marketing. It has recent applications to other fields,
such as bioinformatics [3, 5], World Wide Web [15], criminal networks [6] and
financial networks [17]. The goal of MBA is to identify relationships between
groups of products, items, or categories.

The information obtained from MBA is of paramount importance in the
business strategy and operations. In Marketing, we can find valuable applications



such as product placement, optimal product-line offering, personalized marketing
campaigns and product promotions. The analysis is commonly supported by
Machine Learning, Optimization and Logical rules for association.

This work is focused on a specific combinatorial optimization methodology
to assist product placement. Incidentally, it finds nice applications in biological
systems as well. The problem under study is called Max Cut-Clique (MCC ), and
it was introduced by P. Martins [19].

Given a simple undirected graph G = (V,E) (where the nodes are items
and links represent correlations), we want to find the clique C ⊆ V such that
the number of links shared between C and V − C is maximized. Basically, the
goal is to identify a set of key-products (clique C), that are correlated with a
massive number of products (V − C). The MCC has an evident application to
product-placement. For instance, the manager of a supermarket must decide
how to locate the different items in different compartments. In a first stage, it
is essential to determine the correlation between the different pairs of items, for
psychological/attractive reasons. Then, the priceless/basic products (bread, rice,
milk and others) could be hidden on the back, in order to give the opportunity
for other products in a large corridor. Chocolates should be at hand by kids.
Observe that the MCC appears in the first stage, while marketing/psychological
aspects play a key role in a second stage for product-placement in a supermarket.

In [19], the author states that the MCC is presumably hard, since related
problems such as MAX − CUT and MAX − CLIQUE are both NP-Complete.
A formal proof had to wait until 2018, where a reduction from
MAX − CLIQUE was provided [4]. Therefore, the MCC is systematically
addressed by the scientific community with metaheuristics and exact solvers
that run in exponential time. The first heuristic available in the literature on
the MCC develops an Iterated Local Search [20]. Integer Linear Programming
methods are also available [13]. The literature in the MCC is not abundant,
since the problem has been posed recently.

A formal proof of complexity [4] is here included, since it is simple and it
supports the applicability of heuristics. Furthermore, the main concepts of the
previous GRASP/VND heuristic is given. A fair comparison between the novel
proposal and this heuristic takes place.

This paper is organized in the following manner. Section 2 formally
presents the hardness of the MCC . Section 3 briefly presents the previous
GRASP/VND methodology. The novel Genetic Algorithm is introduced in
Section 4. A fair comparison between both heuristics is presented using
DIMACS benchmark in Section 5. Section 6 contains concluding remarks and
trends for future work.

The reader is invited to consult the authoritative books on Graph Theory [14],
Computational Complexity [10] and Metaheuristics [11] for the terminology used
throughout this work.



2 Computational Complexity

The cornerstone in computational complexity is Cook’s Theorem [8] and Karp
reducibility among combinatorial problems [18].

Stephen Cook formally proved that the joint satisfiability of an input set of
clauses in disjunctive form is the first NP-Complete decision problem [8].
Furthermore, he provided a systematic procedure to prove that a certain
problem is NP-Complete. Specifically, it suffices to prove that the decision
problem belongs to set NP, and that it is at least as hard as an NP-Complete
problem. Richard Karp followed this hint, and presented the first 21
combinatorial problems that belong to this class [18]. In particular,
MAX − CLIQUE belongs to this list. The reader is invited to consult an
authoritative book in Complexity Theory, which has a larger list of
NP-Complete problems and a rich number of bibliographic references [10].

Here, we formally prove that the MCC is at least as hard as
MAX − CLIQUE . Let us denote |C| the cardinality of a clique C, and δ(C)
denotes the corresponding cutset induced by the clique (or the set) C.

Definition 1 (MAX-CLIQUE).
GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

For convenience, we describe MCC as a decision problem:

Definition 2 (MCC).
GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?

Theorem 1 was established for the first time in [4]. For a matter of
completeness, the proof is here included.

Theorem 1. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX − CLIQUE .
Consider a simple graph G = (V,E) with order n = |V | and size m = |E|. Let
us connect a large number of M hanging nodes, to every single node v ∈ V .
The resulting graph is called H (see Figure 1 for an example). If we find a
polynomial-time algorithm for MCC , then we can produce the max cut-clique
in H. But observe that the Max Cut-Clique C in H cannot include hanging
nodes, thus it must belong entirely to G. If a clique C has cardinality c, then
the clique-cut has precisely c × M hanging nodes. By construction, the
cut-clique must maximize the number of hanging nodes, if we choose M ≥ m.
As a consequence, c must be the MAX − CLIQUE . We proved that the MCC
is at least as hard as MAX − CLIQUE , as desired. Since MCC belongs to the
set of NP Decision problems, it belongs to the NP-Complete class. �

Theorem 1 promotes the development of heuristics in order to address the
MCC.
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Fig. 1. Construction of H with M = 21 hanging nodes.

3 GRASP/VND Heuristic

GRASP and Tabu Search are well known metaheuristics that have been
successfully used to solve many hard combinatorial optimization problems.
GRASP is an iterative multi-start process which operates in two phases [22]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase. Tabu Search [12, 2] is a strategy to prevent
local search algorithms getting trapped in locally optimal solutions. A
penalization mechanism called Tabu List is considered to avoid returning to
previously visited solutions. For a complete description of these methods the
reader is referred to the works of Glover and Laguna [12] and Resende and
Ribeiro [22]. The reader is invited to consult the comprehensive Handbook of
Metaheuristic for further information [11].

The full GRASP/VND implementation for the MCC is proposed in [4]. It
strictly follows a traditional two-phase GRASP template with a Variable
Neighborhood Descent (VND) as the local search phase, followed by an
Update of a Tabu list.

The goal in VND to combine a rich diversity of neighborhoods in order to
obtain a solution that is both feasible and locally optimum for every feasible
neighborhood. In [4], the authors consider five neighborhood structures
considered to build the VND:

– Remove: a singleton {i} is removed from a clique C.
– Add: a singleton {i} is added from a clique C.
– Swap: if we find j /∈ C such that C − {i} ⊆ N(j), we can include j in the

clique and delete i (swap i and j).
– Cone: generalization of Swap for multiple nodes. The clique C is replaced

by C ∪ {i} − A, being A the nodes from C that are non-adjacent to i.



– Aspiration: this movement offers the opportunity of nodes belonging to the
Tabu List to be added.

The previous neighborhoods take effect whenever the resulting cut-clique is
increased. It is worth to remark that Add, Swap, and Aspiration were
already considered in the previous ILS implementation [20]. The current VND
is enriched with 2 additional neighborhood structures, named Remove and
Cone. The Tabu list works during the potential additions during Add, Swap
and Cone. On the other hand, Aspiration provides diversification with an
opportunistic unchoking process: it picks nodes from the Tabu List instead.
The reader is invited to find further details in [4].

4 Genetic Algorithm

Genetic Algorithms GA is a well-known family of metheuristics to solve hard
combinatorial optimization problems. They belong to Evolutionary Computing,
a wider family of metaheuristics. The goal is to emulate principles of the natural
evolution of biological species, where the most adaptive individuals survive [16].
The reader can find a generous number of applications of GA to Engineering
in [23].

Algorithm 1 GA: Basic Algorithm

Input: G
Output: C

1: generation = 0
2: Pop(generation)← Initialize(G)
3: while (generation < MAX GENERATION) do
4: fitnessPop← evaluate (Pop(generation))
5: Parents ← tournamentSelection (Pop(generation))
6: Offspring ← Crossover2x (Parents)
7: Offspring ← simpleMutation (Offspring)
8: newpop ← replacement (Offspring, Parents)
9: generation = generation+ 1

10: P (generation) = newpop

11: end while
12: return C . Best C Ever Found

In general, the algorithm randomly generates a set of feasible solutions, which
are the individuals of the initial population. Then, combining crossover and
mutation, this initial population evolves, and new generations are defined until
a halting criterion is met. While the evolution is running, the exploration and
exploitation of the solution space occurs, and an adequate operation selection
must be applied [21]. Furthermore, the definition of the next generation trades
between the selection of the best solutions and the preservation of the main
characteristics of the population.



We strictly followed the traditional template of Genetic Algorithms, in
Algorithm 1. In this case, the input is a simple undirected graph G = (V,E)
and the result is a clique C. The development is based on Malva Project, a
collaborative and open source framework for computational intelligence in
C++ [9]. The main reason of this choice is performance. The particular
functions that are suitable for the MCC are detailed in the following
subsections.

4.1 Fitness and Notation

Consider a simple graph G = (V,E). Let us sort the node-set V = {v1, . . . , vn}.
Each individual is represented by a bitmap, which is a binary word
X = (x1, . . . , xn) such that xi = 1 means that node vi belongs to the clique C.

The fitness function is responsible for the survivability of the individuals in
order to promote to the next generation. In this case, the fitness is precisely our
objective function:

|δ(C)| =
∑
vεC

deg(v)− |C| × |C − 1| (1)

The fitness evaluation is performed by Algorithm 2, where Expression (1) is
considered.

Algorithm 2 Evaluate

Input: X , G
Output: fitness

1: fitness = 0
2: for i = 1 to |V | do
3: if (X [i]) = 1 then ∀i ∈ X
4: fitness = fitness+ deg(i)

5: end if
6: end for
7: fitness = fitness− |C| ∗ |C − 1|
8: return fitness

Since we store the degree-sequence in a vector, the evaluation deg(i) can be
accessed fast, and using memory O(1).

4.2 Selection: Tournament Selection

Selection determines which individuals will be parents of the next generation.
In brief, the idea is to propagate good characteristics for the survival for the
next generations. However, elitism selection must be avoided in order to prevent
premature convergence of the method.



For that reason, the Goldberg Tournament Selection of size 2, plays a
fundamental role in determining a trade-off between exploitation and
exploration. Here, two individuals are randomly taken from the whole
generation and their respective fitness compared, the one who maximizes this
value is effectively selected as a parent of the new generation (Line 5,
Algorithm 1).

4.3 Crossover

The evolutionary operators combine the genetic information of two or more
individuals into new individuals with better fitness. Precisely, the recombination
is executed by Crossover2X. Given two parents X , Y and a crossover probability
pc, Crossover2X returns two descendants X ∗ and Y∗.

The operation takes place with probability pc (Lines 1-2). In order to perform
the crossover, 2 index-nodes h < k are uniformly picked at random from the
labels {1, . . . , n} (Line 3) and define two individuals, X = (x1, . . . , xn) and
Y = (y1, . . . , yn). The children X∗ and Y ∗ keep identical genetic information
from their corresponding parents, for the elements i < h (Lines 4-7) or i ≥ k
(Lines 12-15), but a crossing occurs between the indices i : h ≤ i < k (Lines
8-11). Algorithm 3 returns the descendants X ∗ and Y∗.

Algorithm 3 Crossover2X

Input: X , Y, pcrossover
Output: X ∗, Y∗

1: prob = random(0, 1)
2: if prob < pc then
3: (h, k) = random(0, |V | − 1)
4: for i = 1 to h− 1 do
5: X ∗[i] = X [i]
6: Y∗[i] = Y[i]

7: end for
8: for i = h to k − 1 do
9: X ∗[i] = Y[i]

10: Y∗[i] = X [i]

11: end for
12: for i = k to |V | − 1 do
13: X ∗[i] = X [i]
14: Y∗[i] = Y[i]

15: end for
16: end if

The traditional crossover operation considers a single index to cross the
genetic information. Here, we used two indices for diversification. The
parameter pc is obtained using a statistical inference from a training set.
Section 4.7 presents further details of the parametric selection.



4.4 Mutation

This technique applies an operation called mutation that works locally in a
solution, changing one or more bits uniformly at random. In brief, consider a
solution X = (x1, . . . , xn). This operator performs a random walk in the
neighborhood of X . This is known as a Simple Mutation, which modifies a
single bit from X at random, with probability pm.

Algorithm 4 Simple Mutation

Input: X , pm
Output: X ∗

1: for i = 1 to |V | − 1 do
2: X ∗[i] = X [i]

3: end for
4: prob = random(0, 1)
5: if prob < pm then
6: k = random(0, |V | − 1)
7: new k = random(0, 1)
8: X ∗[k] = new k

9: end if
10: return X ∗

Among the Evolutionary Computing models, GA applies crossover with a
greater probability than mutation (pc > pm). The rationale behind this decision
is that the exploration of the solution space is maximized. The adjustment of
pm is explained in Section 4.7.

4.5 Replacement: New generation

The replacement of the generation can be performed in various manners. Since
our solution is diversity-driven, we selected the next generation using from the
joint-set of descendants and parents (Line 8, Algorithm 1).

4.6 Feasible Solution

Observe that a bitmap can either represent a feasible or unfeasible solution.
An unfeasible solution has different treatments according to the domain of the
problem at hand. As the feasible solution must fulfill the adjacency-relation
in the graph, every time its structure is manipulated by operations, a shaking
algorithm is applied in order to preserve feasibility. Furthermore, the evaluation
only can be practical over a feasible solution.

In this sense Algorithm 5 is a fundamental piece of code. It is inspired by the
Construction Phase of the GRASP/VND introduced in [4].



Algorithm 5 Feasible Solution Construction

Input: X , G
Output: X

1: C ← ∅, C′ ← ∅
2: improving = MAX ATTEMPTS
3: while improving > 0 do
4: i← selectRandom(X )
5: C′ ← [C ∩N(i)] ∪ {i}
6: if |E′(C′)| > |E′(C)| then
7: C ← C′
8: improving = MAX ATTEMPTS
9: else

10: improving = improving − 1

11: end if
12: end while
13: X ← C

4.7 Parameters Adjustment

A preliminary training set of instances were performed in order to tune the
parameters using statistical analysis. Concretely, Rank Test was considered
including a 30 independent runs set, finding optimal values in the cartesian
product for pm, pc, pop size.

The performance is measured in terms of the quality of the solution and
computational efficiency. Each set of parameters was applied over DIMACS
benchmark, for graphs with different link-densities. The selected instances for
this preprocessing state were p hat300-1, MANN a9 and keller4.

5 Computational Results

In order to test the performance of the algorithm, a fair comparison between
both heuristics is carried out using DIMACS benchmark. The test was executed
on an Intel Core i3, 2.2 GHz, 3GB RAM. Table 1 reports the performance of
our GA for each instance 1.

All instances were tested using 60 runs and the stop criterion defined as
MAX GENERATION = 1000, since the optimal value was reached from
generation 250 to 850 in the numerous execution of the algorithm. Meanwhile
calibration results for algorithm parameters was: p mutex = 0.1,
p crossover = 0.8, pop size = 200. For the construction of a feasible solution in

Algorithm 5, the value of MAX ATTEMPTS = b |V |10 c ∗ 2.
Table 1 is divided into three main vertical areas for each instance. The

leftmost one indicates the best solution known and reached according to [20];
then, the best solution reached and its computational time for [4] and the third

1 All the scripts are available at the following URL: https://drive.google.com/

drive/folders/1mCTaJM4SA62rFhIutam1xDU-PZlXKtJF



the results for GA. An additional column indicates the optimal gap between
GRASP/VND and GA.

The reader can appreciate that for dense instances the GA maintains its
computational times under 5 minutes in the worst case. In the cases where the
best solution was reached at least one time over 60 runs, the optimal reported
is close to the optimum value. Furthermore, a fair comparison between both
approaches is conducted when averages values are reported.

Table 1. Comparative results.

ILS GRASP /VND Genetic Algorithm GAP
Instances |δ(C)| |δ(C)| T (s) |δ(C)| T (s) (%)

avg avg avg avg

c-fat200-1 81 81 0.37 81 6.4 0.0
c-fat200-2 306 306 0.81 306 7.5 0.0
c-fat200-5 1892 1892 4.94 1892 12.5 0.0
c-fat500-1 110 110 2.46 110 16.15 0.0
c-fat500-2 380 380 5.83 380 14.3 0.0
c-fat500-5 2304 2304 10.85 2304 20.36 0.0
c-fat500-10 8930 8930 65.74 8930 32.59 0.0
p hat300-2 4637 4636.2 3659.39 4633.40 171.9 0.0
p hat300-3 7740 7726.8 3992.42 7387.27 279.8 0.04
keller5 15184 15183.24 1167.64 12382 50.57 0.18
c125 9 2766 2766 253.25 2737.2 5.0 0.01
MANN a27 31284 31244.10 548.54 30405 46.49 0.03

The results described in this section reflect that our GA methodology is
competitive with state-of-the-art solutions for the MCC , as well as having a
quality solution and computational time efficiency. We underscore the accuracy
reached and the considerable reduction in computational effort, finding optimal
or near-optimal solutions in reasonable times.

6 Conclusions and Trends for Future Work

A deep understanding of item-correlation is of paramount importance for
decision makers. Product-placement is a practical example in which the
dialogue between operational researchers and decision makers is essential.

In this work we study a hard optimization problem, known as the Max Cut-
Clique or MCC for short. Basically, the goal is to identify a set of key-products,
that are correlated with a massive number of products. This idea has been
successfully implemented in clothing stores. We believe that it is suitable for
supermarkets and even for web sales.

Given the hardness of the MCC , a full Genetic Algorithm was introduced in
order to solve the problem. A fair comparison with previous proposals reveals
that our heuristic is both competitive and faster than a state-of-the-art solutions.



This fact provides a room for potential online applications, where the number
of items and customers is dynamic.

As future work, we want to implement our solution into a real-life product-
placement scenario. After the real implementation, the feedback of sales in a
period is a valuable metric of success.
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