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Abstract. The object under study is a combinatorial optimization
problem motivated by the topological network design of communication
systems, meeting reliability constraints. Specifically, we introduce the
Generalized Steiner Problem with Node-Connectivity Constraints and
Hostile Reliability, or GSPNCHR for short. Since the GSPNCHR
belongs to the class of NP-Hard problems, approximative algorithms
are adequate for medium and large-sized networks. As a consequence,
we develop a GRASP/VND methodology. The VND includes three
local searches, that replace special elementary paths or trees,
preserving feasibility. Our goal is to find a minimum-cost solution,
meeting a reliability threshold, where both nodes and links may fail
with given probabilities. We adapted TSPLIB benchmark in order to
highlight the effectiveness of our proposal. The results suggest that our
heuristic is cost-effective, providing highly-reliable networks.

Keywords: Combinatorial Optimization Problem, Computational
Complexity, Network Reliability, GSPNCHR, GRASP, VND.

1 Motivation

Currently, the backbone of the Internet infrastructure is supported by
fiber-optics communication. Fiber-To-The-Home (FTTH) services have a large
penetration throughout the world, and provides high data rates to the final
customers. However, there are several shortcomings that should be addressed
urgently. The physical design of FTTH is not suitable for large-scale natural
disasters and/or malicious attacks [16]. The monitoring and detection of
failures are sometimes slow, and a service disruption of hours is extremely
harmful for business models. Furthermore, FTTH services are suffering the
capacity crunch problem, and elastic optical networks (EON) combined with
smart traffic engineering and additional redundancy is currently in order.

Consequently, a smart augmentation of the physical network is mandatory.
Since the deployment of fiber-optics is an important economical investment,



the topological network design of FTTH networks should be revisited. The goal
is to interconnect distinguished nodes, called terminals, using large level of
redundancy, and simultaneously, meeting large reliable constraints.

Reliability analysis deals with probabilistic failures on the components of a
system. The reliability is precisely the probability of correct operation of the
whole system, subject to random failures. Here, we consider a realistic hostile
model, where both nodes and links could fail. Our goal is to understand the cost-
reliability trade-off, and how the reliability is naturally increased adding levels
of redundancy between distinguished terminals. The contributions of this paper
can be summarized in the following items:

1. The Generalized Steiner Problem with Node-Connectivity Constraints and
Hostile Reliability (GSPNCHR), is introduced.

2. We formally prove that the GSPNCHR belongs to the NP-Hard class.
3. As a consequence, a GRASP/VND methodology is proposed.
4. Our results highlight that the model is robust under non-terminal node-

failures, rather than link-failures.

The document is organized in the following manner. The related work is
presented in Section 2. A formal description for the GSPNCHR is presented
in Section 3; its NP-Hardness is also established. A GRASP/VND solution is
introduced in Section 4. Numerical results are presented in Section 5. Section 6
contains concluding remarks and trends for future work.

2 Related Work

Here, we extend the Generalized Steiner Problem (GSP), adding
node-connectivity requirements and a hostile network reliability model with
probabilistic failures on its components. We cover the main body of related
works in the fields of network reliability analysis, topological network design
and joint problems from the scientific literature.

Scarce works jointly deal with a topological network optimization under
reliability constraints. Javiera Barrera et. al. proposed a topological network
optimization, trying to minimize costs subject to K-terminal reliability
constraints [3]. The authors consider Sample Average Approximation (SAA)
method, which is a powerful tool for stochastic optimization and for the
resolution of NP-Hard combinatorial problems with a target probability
maximization [13]. They conclude that suboptimal solutions could be found if
dependent failures are ignored in the model. The scientific literature also offers
topological optimization problems meeting reliability constraints, or reliability
maximization under budget constraints, which is known as network synthesis.
The reader can find a survey on the synthesis in network reliability in [4]. More
recent works propose a reliability optimization in general stochastic binary
systems [7], even under the introduction of Sample Average
Approximation [20]. Building uniformly most-reliable graphs is an active and
challenging research field, where the goal is to find graphs with fixed nodes and



links with maximum reliability evaluation in a uniform sense. The interested
reader can consult [2] for conjectures in this field. A close problem to ours is to
consider topological transformations (i.e., moving links or path/tree
replacements) in order to increase the reliability measure. This problem is not
mature, and a recent work propose a novel reliability-increasing network
transformation [5]. There, E. Canale et. al. show that any graph with a
cut-point can be transformed into a biconnected graph with greater reliability.
Using this remarkable property, our design does not include cut-points.

Most works in the field of network reliability analysis deal with its evaluation
rather than its maximization. The literature on network reliability evaluation is
abundant, and here we can mention distinguished works on this field. A trade-off
between accuracy and computational feasibility is met by simulations, given the
hardness of the classical network reliability models [11]. Macroscopically, Monte
Carlo methods consider independent replications of a complex system, and by
means of statistical laws find pointwise estimations, in order to make decisions
on the system. The reader is invited to consult an excellent book on Monte Carlo
methods authored by Fishman [9], which was inspirational for network reliability,
numerical integration, statistics and other fields of knowledge. In our particular
case we deal with the hostile network reliability model, where both links and non-
terminal nodes fail independently. Its reliability evaluation belongs to the class
of NP-Hard problems as well [11]. Recursive Variance Reduction (RVR) is an
outstanding technique for the reliability estimation [8]. This formulation allows
a meaningful variance reduction, and the product between time and variance is
also reduced when compared to Crude Monte Carlo. Furthermore, the variance is
mathematically proved to be always better in RVR than in CMC. More recently,
the applicability of RVR is extended to Stochastic Monotone Binary Systems [6].
Since the hostile model is an SMBS, in this work we consider RVR for the network
reliability estimation.

In the Generalized Steiner Problem (GSP), the goal is to communicate a
given subset of terminal-nodes at the minimum cost, meeting connectivity
requirements either by link-disjoint (GSP-EC) or node-disjoint (GSP-NC)
paths. Since the problem is NP-Hard, the literature offers approximation
algorithms as well as metaheuristics. Agrawal, Klein and Ravi [1] developed an
approximation algorithm with logarithmic factor for the GSP-EC. Jain [12]
presented a factor-2 approximation algorithm for the GSP-EC, using the
primal-dual schema for linear programming. A deep inapproximability result
for the GSP-NC without Steiner nodes was introduced by Kortsarz in [14].
In [24] an enumeration of optimal solutions for the GSP is carried out with a
compact data structure, called Zero-Suppressed Binary Decision Diagrams
(ZDD). The authors show that this method works for several real-world
instances. Heuristics are also available for the GSP. Sartor and Robledo
developed a GRASP methodology to address the GSP-EC [23]. In [19], S.
Nesmachnow presents an empirical evaluation of several simple metaheuristics
(VNS is included) to address the GSP, with promising results. Several
implementations of VNS have been developed for the particular Traveling



Salesman Problem as well, showing that VNS is competitive. Exact solutions
for the TSP and extensions can also be found in [22]. The CPU-times provided
by the exact solutions are longer than the heuristics, and in particular VNS
proposal for the TSP.

3 Problem and Complexity

In this section, we first present a general description of the GSPNCHR. Then,
a formal combinatorial optimization problem is introduced, and the hardness is
established.

Definition 1 (GSPNCHR). Consider a simple undirected graph G = (V,E),
terminal-set T ⊆ V , link-costs {ci,j}(i,j)∈E and connectivity requirements R =
{ri,j}i,j∈T . Further, we assume that both links and non-terminal (Steiner) nodes
fail with respective probabilities PE = {pe}e∈E and PV−T = {pv}v∈V−T . Given
a reliability threshold pmin, the goal is to build a minimum-cost topology GS ⊆
G meeting both the connectivity requirements R and the reliability threshold:
RK(GS) ≥ pmin, being K = T the terminal-set.

Recall that the K-Terminal reliability is the probability that all the
terminals belong to the same component, after node and link failures. The
exact computation of the reliability RK(G) is NP-Hard [11]. Consider an
instance (G,C,R, T, PE , PV−T , pmin) of the GSPNCHR, and the following
decision variables:

yu,v(i,j) =

{
1 if(i, j) ∈ E is used in a path u− i− j − v
0 otherwise

x(i,j) =

{
1 if(i, j) ∈ E is used in the solution
0 otherwise

x̂i =

{
1 if the Steiner node i ∈ V − T is used in the solution
0 otherwise

Here, we introduce the GSPNCHR as the following combinatorial
optimization problem:



min
∑

(i,j)∈E

ci,jxi,j

s.t. xij ≥ yu,v(i,j) + yu,v(j,i) ∀ (i, j) ∈ E, ∀u, v ∈ T, u 6= v (1)∑
(u,i)∈E

yu,v(u,i) ≥ ru,v ∀u, v ∈ T, u 6= v (2)

∑
(j,v)∈E

yu,v(j,v) ≥ ru,v ∀u, v ∈ T, u 6= v (3)

∑
(i,p)∈I(p)

yu,v(i,p) −
∑

(p,j)∈I(p)

yu,v(p,j) ≥ 0, ∀p ∈ V − {u, v}, ∀u, v ∈ T, u 6= v (4)

∑
(s,i)∈E

xs,i ≤Mx̂s, ∀s ∈ V − T (5)

RK(GS) ≥ pmin (6)

x(i,j) ∈ {0, 1} ∀(i, j) ∈ E (7)

x̂i ∈ {0, 1} ∀i ∈ V − T (8)

yu,v(i,j) ∈ {0, 1} ∀(i, j) ∈ E, ∀u, v ∈ T, u 6= v (9)

The goal is to minimize the global cost of the solution. The set of
Constraints 1 state that links are one-way. The connectivity requirements are
expressed by means of Constraints 2 and 3. Constraints 4 represent Kirchhoff
law, or flow conservation. Constraints 5 state that an incident link to a Steiner
node can be used only if the Steiner node is considered in the solution. Observe
that M is a large real number; M = |E| can be used in the model without loss
of generality. The minimum reliability threshold is established with
Constraint 6, being GS ⊆ G the subraph with all the constructed links xi,j .
Finally, the set of constraints 7-9 state that all the decision variables belong to
the binary set {0, 1}. Now, we establish the hardness for the GSPNCHR.

Theorem 1. The GSPNCHR belongs to the class of NP-Hard problems.

Proof. By inclusion. Recall that Hamilton Tour belongs to Karp list of NP-
Complete problems [11]. Consider a simple graph G = (V,E). Consider the
trivial instance (G,C,R, T, PE , PV−T , pmin) with unit costs, perfect nodes/links,
no Steiner nodes and requirements ri,j = 2 for all i, j ∈ V . The cost is not greater
than n = |V | if and only if G has a Hamilton tour.

The GSPECHR is also NP-Hard; the proof is analogous. Theorem 1 can be
strengthened considering strong inapproximability results [10].

In order to tackle the GSPNCHR, first we provide full solution for the relaxed
version without the reliability threshold, this is, without Constraint 6. Then, we
count the number of feasible solutions that meet that constraint. We use this
approach, since we want to determine if the topological robustness has an impact
in the resulting network reliability.



4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a
powerful multi-start process which operates in two phases [21]. A feasible
solution is built in a first phase, whose neighborhood is then explored in the
Local Search Phase [21]. The second phase is usually enriched by means of
different variable neighborhood structures. For instance, VND explores several
neighborhood structures in a deterministic order. Its success is based on the
simple fact that different neighborhood structures do not usually have the
same local minimum. Thus, the resulting solution is simultaneously a locally
optimum solution under all the neighborhood structures. The reader is invited
to consult the comprehensive Handbook of Heuristics for further
information [17]. Here, we develop a GRASP/VND methodology.

4.1 NetworkDesign

A pseudocode of our full proposal is presented in Figure 1. It receives the ground
graph GB , a number of iterations iter and a positive integer k to find the k
shortest paths during the Construction Phase, a reliability threshold pmin, the
elementary reliabilities PE , PV−T and number of iterations simiter during the
simulations carried out in the Reliability Phase. If the resulting solution respects
Constraint 6, it is included in the set sol, that is returned in Line 10. Observe that
RVR method is considered in order to test this reliability constraint [8]. Our goal
is to determine how many solutions for the relaxed problem meet Constraint 6,
as a function of the robustness (connectivity matrix R, elementary reliabilities
and threshold pmin).

Algorithm 1 sol = NetworkDesign(GB , iter, k, pmin, PE , PV−T , simiter)

1: i← 0; P ← ∅; sol← ∅
2: while i < iter do
3: g ← Construction(GB , P, k)
4: g ← V ND(g, P )
5: reliability ← RV R(gsol, PE , PV−T , simiter)
6: if reliability > pmin then
7: sol← sol ∪ {gsol}
8: end if
9: end while

10: return sol

Fig. 1. Pseudocode for the main algorithm: NetworkDesign.



4.2 Construction Phase

This algorithm trades simplicity and effectiveness, building paths iteratively.
Figure 2 receives the ground graph GB , the matrix with link-costs C, the

connectivity matrix R, and the parameter k. Denote S
(I)
D the set of terminal

nodes, following the terminology of the backbone design from Wide Area
Networks. In Line 1, the solution gsol is initialized only with the terminal nodes
SI
D without links, M = {mi,j}i,j∈T stores the unsatisfied requirements, so

initially mi,j = ri, for all i, j ∈ S
(I)
D , and the matrix P = {Pi,j}i,j∈S(I)

D

that

represents the collection of node-disjoint paths is empty for all Pi,j .
Additionally, the matrix A = {Ai,j}i,j∈S(I)

D

that controls the number of

attempts that the algorithm fails to find ri,j node-disjoint paths between i, j is

initialized correspondingly: Ai,j = 0∀i, j ∈ S
(I)
D .

Algorithm 2 (sol, P ) = Construction(GB , C,R, k)

1: gsol ← (S
(I)
D , ∅); mi,j ← ri,j ; Pi,j ← ∅, ∀i, j ∈ S(I)

D ; Ai,j ← 0,∀i, j ∈ S(I)
D

2: while ∃mi,j > 0 : Ai,j < MAX ATTEMPTS do

3: (i, j)← ChooseRandom(S
(I)
D : mi,j > 0)

4: G← GB \ Pi,j

5: for all (u, v) ∈ E(G) do
6: cu,v ← cu,v × 1{(u,v)/∈gsol}
7: end for
8: Lp ← KSP (k, i, j, G,C)
9: if Lp = ∅ then

10: Ai,j ← Ai,j + 1; Pi,j ← ∅; mi,j ← ri,j
11: else
12: p← Select Random(Lp); gsol ← gsol ∪ {p}
13: Pi,j ← Pi,j ∪ {p}; mi,j ← mi,j − 1
14: (P,M)← General Update Matrix(gsol, P,M, p, i, j)
15: end if
16: end while
17: return (gsol, P )

Fig. 2. Pseudocode for the Construction Phase.

The purpose of the while-loop (Lines 2-13) is to fulfill all the connectivity
requirements in a randomized fashion. Observe that we selected a large
Restricted Candidate List (RCL) in our GRASP proposal for diversification
purposes. A pair of terminals (i, j) is uniformly picked at random from the set

S
(I)
D , provided that mi,j > 0 (Line 3). The graph G defined in Line 4 discards



the nodes that were already visited in the previous paths. Therefore, if we find
some path between i and j in G, it will be included. In the for-loop of
Lines 5-7, an auxiliary matrix with the costs C = ci,j allows to use already
existent links from gsol without additional cost, and add them to build a new
node-disjoint path. The k-Shortest Paths from i to j are computed in Line 8
using Yen algorithm [18], that finds the k-Shortest Paths between two fixed
nodes in a graph. In Line 9, we test if the list Lp is empty. In this case we
re-initialize Pi,j , mi,j , and add a unit to Ai,j , since i and j belong to different
connected components. If the list Lp is not empty, a path p is uniformly picked
from the list Lp, and it is included in the solution (Line 12). The path p is
added to Pi,j , and the requirement mi,j is decreased a unit (Line 13). The
addition of the path p could build node-disjoint paths from different terminals.
Consequently, the function General Update Matrix finds these new paths.
Construction returns a feasible solution gsol equipped with all the sets
P = {Pi,j}i,j∈S(I)

D

of node-disjoint pairs between the different terminals

(Line 17). The reader can observe that Construction returns a feasible solution
for the GSPNC, which is the relaxed version of the GSPNCHR.

4.3 Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Here, we
consider three neighborhood structures to build a VND [17]. First, the concept
of key-nodes, key-paths and key-trees are in order:

Definition 2 (key-node). A key-node in a feasible solution v ∈ gsol is a
Steiner (non-terminal) node with degree three or greater.

Definition 3 (key-path). A key-path in a feasible solution p ⊆ gsol is an
elementary path where all the intermediate nodes are non-terminal with degree
2 in gsol, and the extremes are either terminals or key-nodes.

A feasible solution gsol accepts a decomposition into key-paths:
Kgsol = {p1, . . . , ph}.

Definition 4 (Key-tree). Let v ∈ gsol be a key-node belonging to a feasible
solution gsol. The key-tree associated to v, denoted by Tv, is the tree composed
by all the key-paths that meet in the common end-point (i.e., the key-node v).

Now, we are in conditions to define three neighborhood structures that
combine the previous concepts. Consider a feasible solution gsol for the
GSPNC.

Definition 5 (Neighborhood Structure for key-paths). Given a key-path
p ∈ gsol, a neighbor-solution is ĝsol = {gsol \ p} ∪ {p̂}, where p̂ is other path
that connects the extremes from p. The neighborhood of key-paths from gsol is
composed by the previous operation to the possible members belonging to Kgsol .



Definition 6 (Neighborhood Structure for key-tree). Consider the key-
tree Tv ∈ gsol rooted at the key-node v. A neighbor of gsol is ĝsol = {gsol \ Tv} ∪
{T}, being T another tree that replaces Tv with identical leaf-nodes.

Definition 7 (Neighborhood Structure for key-path replacement).
Given a key-path p ⊆ gsol, a neighbor solution for gsol is
ĝsol = {gsol \ p} ∪ {m}, being m the set of nodes and links that will be added to
preserve the feasibility of ĝsol.

Our full algorithm NetworkDesign considers a classical VND
implementation, calling the three respective local searches in order, after the
Construction phase:

1. KeyPathLocalSearch

2. KeyTreeLocalSearch

3. SwapKeyPathLocalSearch

This order was selected by computational reasons: the last one is the most
demanding in terms of CPU, while the former is the most simple. The
respective pseudocodes for the different local searches are presented in
Figures 3-5. It is worth to remark that these local searches take effect only if
the resulting solution is both feasible and cheaper than the original one. The
respective codes from each local search are self-explanatory, and strictly follow
the corresponding neighborhood structures, trying to find better replacements.
For completeness, two auxiliary functions called during these searches are here
explained, in terms of inputs and outputs. We invite the reader to consult [15]
for implementation details:

– General RecConnect: receives the ground graph GB , cost-matrix C, current
solution gsol and a key-node v. It tries to replace the key-tree Tv with a
better key-tree T spanning the same leaf-nodes, preserving feasibility. It
returns another solution and a boolean improve (if improve = 0, an identical
solution is returned).

– FindSubstituteKeyPath: receives the current solution gsol, the key-path p
and a matrix P with the collection of disjoint path between the terminals.
It replaces the current path p by p̂, exploiting the information given by P
in order to reconstruct a new feasible solution. If this solution is cheaper,
it returns improve = 1 and the resulting solution (otherwise, an identical
solution is returned).

In the last step, RVR is introduced in order to determine if Constraint 6
is met. The reader is invited to consult authoritative works on RVR and cites
therein [8].



Algorithm 3 gsol = KeyPathLocalSearch(GB , C, gsol)

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: K(gsol)← {p1, . . . , ph} {Key-path decomposition of gsol}
5: while not improve and ∃ key-paths not analyzed do
6: p← (K(gsol)) {Path not analyzed yet, with extremes u and v}
7: µ̂←< NODES(p) ∪ SD \NODES(gsol) > {Induced subgraph µ̂}
8: p̂← Dijkstra(u, v, µ̂)
9: if COST (p̂) < COST (p) then

10: gsol ← {gsol \ p} ∪ {p̂}
11: improve← TRUE
12: end if
13: end while
14: end while
15: return gsol

Fig. 3. Pseudocode for Local Search 1: KeyPathLocalSearch.

Algorithm 4 gsol = KeyTreeLocalSearch(GB , C, gsol)

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: X ← KeyNodes(gsol) {Key-nodes from gsol}
5: S ← SD \NODES(gsol)
6: while not improve and ∃ key-nodes not analyzed do
7: v ← X {Key-node not analyzed yet}
8: [gsol, improve]← General RecConnect(GB , C, gsol, v, S)
9: end while

10: end while
11: return gsol

Fig. 4. Pseudocode for Local Search 2: KeyTreeLocalSearch.



Algorithm 5 gsol = SwapKeyPathLocalSearch(GB , C, gsol, P )

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: K(gsol)← {p1, . . . , ph} {Key-path decomposition of gsol}
5: while not improve and ∃ key-paths not analyzed do
6: p← (K(gsol)) {Path not analyzed yet}
7: (gsol, improve)← FindSubstituteKeyPath(gsol, p, P )
8: end while
9: end while

10: return gsol

Fig. 5. Pseudocode for Local Search 3: SwapKeyPathLocalSearch.

5 Numerical Results

In order to understand the effectiveness of this proposal, an extensive
computational study was carried out using our main algorithm
NetworkDesign. The experimental analysis was carried out in a Home-PC
(Pentium Core I5, 6GB). Since there are no benchmark for our specific
problem we adapted the well-known TSPLIB instances, adding node/link
failure probabilities and node connectivity requirements. We selected k = 5 for
Construction, which showed acceptable results in a training set. In our
reliability-centric design, we fixed pmin = 0.8; lower values make no sense. The
elementary reliabilities for both Steiner nodes and links are close to the unit,
since we are focused on the design of highly-reliable networks. Specifically, the
nine combinations for pv, pe ∈ {0.99, 0.97, 0.95} were considered in different
instances, being pv and pe the elementary reliabilities for Steiner nodes and
links e = (i, j) respectively. The number of iterations for NetworkDesign is
established in iter = 100, and the number of iterations for the RVR method is
104.

We want to understand the sensibility of the solution to perturbations in
the elementary reliabilities. Therefore, different values for the elementary
reliabilities for both Steiner nodes and links were used. Table 1 shows the
results for each adapted TSPLIB instance. Each column contains, respectively,
name of the TSPLIB instance, percentage of terminal nodes (% T ), relative
improvements of Construction (%IC) and V ND phases (%IV ND), in
relation to the cost of the corresponding input graphs, CPU-time per iteration
of NetworkDesign, reliability estimation R and estimated variance V ar. From
Table 1, we can appreciate that the cost of the resulting graph after the
Construction is practically one-half the cost of its input. The improvement of



V ND is consistently bounded between 30.55% and 39.45%, according to the
instance and its characteristics on the test-set. The minimum threshold
pmin = 0.8 is widely exceeded in all the instances under study, considering the
RVR estimation R. The elementary reliabilities were established in pv = 0.99
and pe = 0.95 respectively for nodes and links, and the range of reliabilities is
bounded between 0.8231 and 0.967, meeting the reliability constraint. The
estimated variance V ar is reduced in average in all the instances under study.
These facts highlight the activity of the VND phase, the accuracy of RVR and
the global effectiveness of our proposal. Furthermore, the CPU times are
acceptable, even under large-sized graphs with 400 nodes.

Tables 2 and 3 illustrate the number of feasible solutions obtained when we fix
the elementary node-reliability and modify the link-reliabilities, and vice-versa.
The suffix TXY in each instance indicates the percentage XY % of terminal
nodes. The feasibility is 100% in almost all the instances under study when both
pe = pv = 0.99. However, the feasibility is dramatically deteriorated as soon as
the link-reliabilities are decreased (see the last column of Table 2). This effect
is not pronounced when the node-reliabilities are reduced, as we can appreciate
from the last column of Table 3. This fact shows that the system is robust under
failures of Steiner nodes.

Table 1: GRASP/VND Effectiveness

Instance % T %IC % IV ND CPU (s) R V ar

att48 20 99.27 34.61 11.466 0.967 7.608E-07
att48 35 98.6 36.83 29.769 0.943 3.448E-06
att48 50 98.22 37.1 65.904 0.927 5.322E-06
berlin52 20 98.98 30.55 30.605 0.937 3.294E-06
berlin52 35 99.06 33.93 33.433 0.938 3.19E-06
berlin52 50 98.02 33.48 106.945 0.907 6.487E-06
brazil58 20 98.92 31.96 62.377 0.885 6.722E-06
brazil58 35 99.25 39.45 68.891 0.86 8.347E-06
brazil58 50 98.75 35.26 103.553 0.91 7.093E-06
ch150 20 99.76 37.51 222.552 0.8559 1.029E-05
ch150 35 99.72 36.65 546.652 0.88.03 9.033E-05
gr202 20 99.89 32.43 528.162 0.8231 1.224E-05
gr202 35 99.75 34.56 3511.698 0.8414 1.11E-05
gr202 50 99.74 33.36 9505.629 0.8303 1.279E-05
rd400 20 99.94 35.84 88.214 0.8094 14.22E-05
rd400 35 99.94 33.54 504.103 0.8537 11.89E-05
rd400 50 99.93 33.16 980.701 0.8643 11.51E-05



Table 2. Feasible solutions with R ≥ 0.98, pv = 0.99 fixed and variable link reliability

Instance pe = 0.99 pe = 0.97 pe = 0.95

att48 T20 100 90 12

att48 T35 100 53 0

att48 T50 100 20 0

berlin52 T20 100 41 0

berlin52 T35 100 50 0

berlin52 T50 100 1 0

brazil58 T20 99 15 0

brazil58 T35 97 0 0

brazil58 T50 100 5 0

ch150 T20 100 0 0

ch150 T35 100 0 0

ch150 T50 100 0 0

gr202 T20 99 0 0

gr202 T35 100 0 0

gr202 T50 100 0 0

rd400 T20 100 0 0

rd400 T35 100 0 0

rd400 T50 100 0 0

Table 3. Feasible solutions with R ≥ 0.98, pe = 0.99 fixed and variable node-reliability

Instance pv = 0.99 pv = 0.97 pv = 0.95

tt48 T20 100 100 99

att48 T35 100 98 96

att48 T50 100 100 99

berlin52 T20 100 100 80

berlin52 T35 100 99 93

berlin52 T50 100 100 100

brazil58 T20 99 59 41

brazil58 T35 97 43 9

brazil58 T50 100 99 81

ch150 T20 100 60 20

ch150 T35 100 98 76

ch150 T50 100 100 97

gr202 T20 99 80 30

gr202 T35 100 69 16

gr202 T50 100 100 76

rd400 T20 100 16 2

rd400 T35 100 98 80

rd400 T50 100 100 100



6 Conclusions and Trends for Future Work

We studied the topological design of highly reliable networks. Our goal is to
combine purely deterministic aspects such as connectivity with probabilistic
models coming from network reliability. For that purpose, the Generalized
Steiner Problem with Node-Connectivity Constraints and Hostile Reliability
(GSPNCHR) is here introduced. The GSPNCHR belongs to the class of
NP-Hard problems, since it subsumes the Generalized Steiner Problem (GSP).
Therefore, exact methods are prohibitive, even for networks with moderate
size. A GRASP/VND solution is here developed, which shows to be both
flexible and effective. Since the reliability evaluation for the hostile model also
belongs to the NP-Hard class, we adopted an outstanding pointwise reliability
estimation, known as Recursive Variance Reduction (RVR) method. This
method is unbiased, accurate and it presents small variance, as the results
show. The model is more sensible to link-failures rather than node-failures.

The interplay between topological network design and network reliability is
not well understood yet. Some local searches were here proposed, essentially
using key-path and key-tree replacements, in order to reduce costs preserving
feasibility. A current research line is to introduce reliability-increasing
transformations. The development of local searches that increase reliability and
reduce costs would enrich the current solution. Another possibility for future
work is to enrich the number of local searches and consider probabilistic
transitions between them.

7 Acknowledgements

This work is partially supported by Project ANII FCE 1 2019 1 156693 Teoŕıa y
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