ANALITYCAL METHOD FOR DIMENSIONING DYNAMIC WDM OPTICAL NETWORKS

Marta Barría⁽²⁾, Nicolás Jara^{(1),} José Manuel Martínez⁽¹⁾, Reinaldo Vallejos ⁽¹⁾

⁽¹⁾ Universidad Técnica Federico Santa María, Valparaíso, Chile
⁽²⁾ Universidad de Valparaíso, Valparaíso, Chile

2019 INFORMS ALIO INTERNATIONAL CONFERENCE

Basic System

WDM network.

Dynamic

Each node is capable of converting wavelengths.

Objective: To offer P classes of service

- Class 1 is highest priority
- Class P is lowest priority

QoS definition:

Blocking Probability of the class $k : B_k$; $1 \le k \le P$

Analysis for a link

Model

- W wavelengths
- arrival process of class k, $1 \le k \le P$:

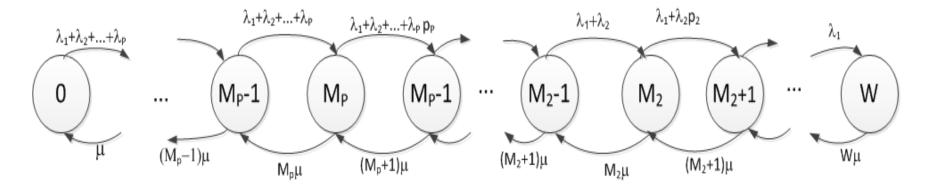
Poisson process with rate λ_k

The burst service time follows an exponential distribution of parameter μ, which is independent of the class.

Analysis for a link

Strategie for offering differents QoS

- ■Users of class k, 1≤ k ≤ P, can transmit using only wavelengths 1 to M_k
- Users of class k-1, transmit using the wavelengths 1 to M_{k-1} (>M_k)


Users of class 1, transmit using wavelengths 1 to W

Model Summary

The above considerations can be summarized in a Markovian model M / M / W / W. State= number of available wavelengths

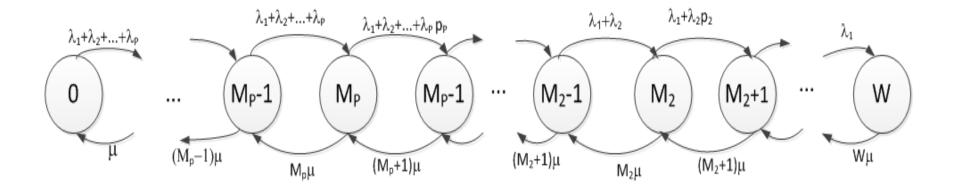
$$\lambda_{k} = \begin{cases} \sum_{j=1}^{P} \lambda_{j} & ; & 0 \le k < M_{P} \\ \sum_{i=1}^{j} \lambda_{i} & ; & M_{j+1} < k < M_{j}; \ j \in \{1, \dots, P\} \\ \sum_{i=1}^{j-1} \lambda_{i} + \lambda_{j} p_{j} & ; & k = M_{j}; \ j \in \{1, \dots, P\} \end{cases}$$
(1)

$$\mu_k = k\mu$$

Contribution of this work

- The thresholds procedure was published in [1]. However to obtain the results, the authors used Markov Decision Process, which is a complex method to evaluate computationally different thresholds.
- Next we derive a new and efficient way of find the different thresholds

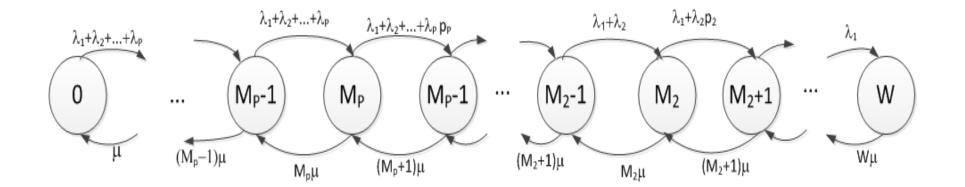
[1] Li Yang and G. Rouskas, «Optimal Wavelength Sharing Policies in OBS networks Subject to QoS constraints, IEEE JSAC, (25) 9, 2007.


Model Solution

 Considering that the previous markov chain is a birth death process, it is known that the recurrent solution of this queue is:

• From left to right:
$$\pi_k = \pi_0 \prod_{j=1}^k \frac{\lambda_{j-1}}{\mu_j}$$
 (2)
• From right to left: $\pi_k = \pi_W \prod_{j=k}^{W-1} \frac{\mu_{j+1}}{\lambda_j}$ (3)

Design Goal


- To find the thresholds M_k, M_{k-1}, ..., M₁ such that qualities of service B_k, B_{k-1}, ..., B₁ of each class are met.
- For this, we consider the non normalized probabilities Pr(k)

Recurrent procedure

- $\Box \text{ Initially: } Pr(1)=1 \text{ ; (or } P(W)=1) \tag{4}$
- According to equations (2, 3 and 4) and the definitions of the different quality of services, the followig proportion must be satisfied:

$$\frac{\Pr(M_{k})}{B_{k}} = \frac{\Pr(M_{k-1})}{B_{k-1}}$$
 (5)

Recurrent procedure

□ The previous recurrent procedure allows the evaluation of all the thresholds: $M_1, M_2, ..., M_P$

Final Remarks

- Then, the contribution of this work consists in proposing the previous recurrent method,
- that allows evaluate the same thresholds in a (much) faster and simpler way.
- This is relevant, because the just described procedure must be applied a great number of times to solve more complex problems, like :
- End-to-end quality of service
- Routing problem, etc.