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Abstract. In this paper we address a fundamental combinatorial
optimization problem in communication systems. A fully-connected
system is modeled by a complete graph, where all nodes have identical
capacities. A message is owned by a singleton. If he/she decides to
forward the message simultaneously to several nodes, he/she will take
longer, with respect to a one-to-one forwarding scheme. The only rule
in this communication system is that a message can be forwarded by a
node that owns the message. The makespan is the time when the
message is broadcasted to all the nodes. The problem under study is to
select the communication strategy that minimizes both the makespan
and the average waiting time among all the nodes. A previous study
claims that a sequential or one-to-one forwarding scheme minimizes the
average waiting time, but they do not offer a proof. Here, a formal
proof is included. Furthermore, we show that the sequential strategy
minimizes the makespan as well. A discussion of potential applications
is also included.
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1 Motivation

The Internet is supported by the client-server architecture, where users connect
with a specific server to download data. This architecture has some benefits.
The service is both simple and highly predictable. However, the server
infrastructure is not scalable when demand is increased. A natural idea to
overcome this scalability issue is to consider content popularity, where the most
popular contents can be shared by the users. The server invites users to
communicate and offer those files which are normally replicated in the network.
An abstraction of this concept is accomplished with peer-to-peer systems (P2P
for short). They are self-organized virtual communities developed on the
Internet Infrastructure, where users, called peers, share resources (content,
bandwidth, CPU-time, memory) to others, basically because they have
common interests. From a game-theoretic point of view, cooperation is better



than competition. From an engineering point of view, we understand that the
power of user-cooperation in P2P systems is maximized, but the real-life design
is jeopardized by other factors. Indeed, broadband resources are better
exploited with cooperation. The altruistic behaviour in P2P networks is
achieved with incentives, using a give-to-get concept [14, 2]. Nevertheless, the
design of a resilient P2P network has several challenges. Indeed, the Internet
access infrastructure is usually asymmetric, hindering peer exchange; peers
arrive and depart the system when they wish [15]; free-riders exploit network
resources but do not contribute with the system; a failure in the underlying
network usually damage the P2P service; there is an explicit trade-off between
the full knowledge of the network (topology, peers resources) and payload,
which directly impacts in the throughput and network performance.

The main purpose of this paper is to understand the best forwarding schemes
in an ideal abstract setting, and how different forwarding schemes are used in
real-life systems. Even though we motivate this paper by P2P systems, our main
result apply to several communication systems, such as scheduling in parallel
unrelated machines, social networks and content delivery networks. Our work is
inspired by a fundamental problem posed for the first time by Qiu and Srikant,
where they state that it should be clear that a good strategy is the one-to-one
forwarding scheme [13]. Even though the authors study the service capacity of a
file sharing peer-to-peer system, its formulation is general enough. For practical
purposes they find a closed formula for the average waiting time following a
one-to-one forwarding scheme when the population N is a power of two. In [9],
a formal proof that the one-to-one forwarding scheme achieves the minimum
waiting time is included, when the population is a power of two. Here, we formally
prove that it is not only good, but also optimal, for both makespan and waiting
time measures. The result holds for an arbitrary population size. We remark
that the optimum forwarding scheme rarely appears in real-life systems. We
discuss this phenomenon showing the gap between this theoretical result and
real-life implementations of communication systems. The main contributions of
this paper are two-fold:

1. The best forwarding scheme in complete homogeneous communication
networks is found.

2. The gap between the best theoretical forwarding scheme and real-life
implementations is discussed.

This paper is organized as follows. The problem under study is presented in
Section 2. The mathematical analysis provides a full solution of the problem,
which is derived in Section 3. The gap between theory and real-life applications
is considered in Section 4. Section 5 contains the main conclusions and trends
for future work.



2 Problem

We are given a full network composed by N peers with identical capacity b
(in bits per second), and a message with size M (measured in bits). A single
node that belongs to the network owns the message, and at time t1 = 0 he/she
forwards the message to one or several peers belonging to the network.

Let us denote τ = M/b the time-slot following one-to-one forwarding time. If
some peer sends the message to c other peers, it will take cτ seconds to perform
the forwarding task. Let us denote 0 = t1 ≤ t2 ≤ . . . ≤ tN the corresponding
completion times of the N peers in this cooperative system. The makespan is
tN , while the average waiting time, t, is the average over the set {t1, . . . , tN}.
Clearly, t ≤ tN .

In a one-to-many forwarding scheme, every peer selects a fixed number c of
peers to forward the message. In general, in a simultaneous forwarding scheme
there is some peer i that, at time ti, simultaneously forwards the message to
more than one peer. In contrast, the only remaining strategy is a sequential or
one-to-one forwarding strategy.
The goal in the Minimum Point-to-Point Makespan (MPTPM) is to minimize
tN :

min
s∈S

max
1≤i≤N

ti, (1)

being s a member belonging to the family of forwarding strategies S, where
each node decides to send the message either to one or to multiple peers, and
may decide a delay to start the transmission as well.

An analogous problem is the Minimum Point-to-Point Waiting Time
(MPTPWT), where the goal is to minimize t among all possible forwarding
strategies:

min
s∈S

1

N

N∑
i=1

ti, (2)

In a one-to-many forwarding scheme, every peer selects a fixed number c of
peers to forward the message. In general, in a simultaneous forwarding scheme
there is some peer i that, at time ti, simultaneously forwards the message to
more than one peer. In contrast, the only remaining strategy is a sequential or
one-to-one forwarding strategy. A peer can decide to delay the transmission as
well.

Here we formally prove that the one-to-one forwarding strategy is optimal
for both the MPTPM and MPTPWT. For short, we will use n = dlog2(N)e and
nc = dlogc(N)e.



3 Solution

A straight calculation provides the makespan and average waiting time in the
one-to-one forwarding scheme:

Lemma 1. The makespan in the one-to-one forwarding scheme is nτ .

Proof. The message is fully owned by 2i peers at time iτ , for i = 1, . . . , n − 1.
The remaining N − 2n−1 peers receive the message at time nτ . ut
Lemma 2. The average waiting time in the one-to-one forwarding scheme is
t = τ

N (nN − 2n + 1).

Proof.

t =
1

N
[

n−1∑
i=1

2i−1iτ + (N − 2n−1)τ ]

=
τ

N
[(n2n−1 − 2n + 1) + (N − 2n−1)n]

=
τ

N
(nN − 2n + 1).

ut
Since n = dlog2(N)e, we conclude that both makespan and average waiting time
grow logarithmically with the population of the system and linearly with respect
to the time-slot τ when the one-to-one strategy is considered. Let us contrast the
result with a one-to-many strategy in what follows, where each peer forwards
the message to c− 1 different peers, for some c > 2.

Lemma 3. The makespan in the one-to-many forwarding scheme of type c− 1
is nc(c− 1)τ .

Proof. By the definition of one-to-many forwarding schemes of type c− 1, there
are Ni = ci−1(c − 1) peers whose completion time is Ti = i(c − 1)τ . Therefore,
the message is fully owned by ci peers at time Ti, for i = 1, . . . , nc − 1. The
remaining N − cnc−1 peers receive the message at time Tnc = nc(c− 1)τ . ut
Lemma 4. The average waiting time in a one-to-many forwarding scheme of
type c− 1 is tc−1 = τ

N [nc(c− 1)N − cnc + 1].

Proof.

tc−1 =
1

N
[

nc−1∑
i=1

NiTi + (N − cnc−1)Tnc

=
1

N
[

nc−1∑
i=1

ci−1(c− 1)i(c− 1)τ + (N − cnc−1)Tnc
]

=
τ

N
[ncc

nc−1(c− 1)− (cnc − 1) + (N − cnc−1)Tnc ]

=
τ

N
[nc(c− 1)N − cnc + 1].

ut



On one hand, we can check that tc−1 equals t when c = 2, as expected.
In fact, the one-to-one strategy is the one-to-many if c − 1 = 1. On the other,
tc−1 > t for every c > 2. The makespan is studied first:

Lemma 5. The makespan in the one-to-one strategy is never greater than in
the one-to-many strategy.

Proof. If c = 2 we see that n2 = n, so (c − 1)nc = n. It suffices to prove that
(c− 1)nc ≥ n for any c ≥ 3, being n = dlog2(N)e and nc = dlogc(N)e:

(c− 1)nc ≥ logc(N c−1) = (c− 1)logc(2)log2(N)

= logc(2
c−1)log2(N) > log2(N);

where the last inequality follows from the fact that 2c−1 > c whenever c ≥ 3.
Since (c−1)nc is an integer, we obtain that (c−1)nc ≥ dlog2(N)e, and the result
follows. ut

A technical lemma will be used in the main result:

Lemma 6. Given two partitions of N =
∑m
i=1 xi =

∑m
i=1 yi such that xi ≥

yi ≥ 0, ∀i = 1, . . . ,m − 1 and 0 ≤ xm < ym. Consider an arrange of times
0 ≤ t1 ≤ t2 ≤ . . . ≤ tm, and a partition for each ti, ti =

∑mi

j=1 tij, where

0 ≤ tij ≤ ti. Given any related partition of xi, xi =
∑mi

j=1 xij, then W x =
1
N

∑m
i=1

∑mi

j=1 xijtij is strictly lower than W y = 1
N

∑m
i=1 yiti.

Proof.

W x =
1

N

m∑
i=1

mi∑
j=1

xijtij <
1

N

m∑
i=1

xiti

=
1

N
(

m−1∑
i=1

xiti + xmtm)

=
1

N
(

m−1∑
i=1

(xi − yi)ti +

m−1∑
i=1

yiti − ymtm + xmtm)

= W y +

m−1∑
i=1

(xi − yi)ti − (ym − xm)tm

= W y +

m−1∑
i=1

(xi − yi)ti − (

m∑
i=1

(xi − yi))tm < W y.

ut

In words, if more peers own the message at any time ti using strategy x
instead of y (xi ≥ yi, i = 1, . . . ,m − 1) and the population is constant (N is
constant, so xm < ym), then x outperforms y in terms of average waiting time.



Lemma 7. The average waiting time in the one-to-one strategy is never greater
than in the one-to-many strategy.

Proof. When ti = i(c − 1)τ we know that ci peers own the message following
the one-to-many forwarding scheme of type c − 1 versus 2i(c−1) following the
one-to-one forwarding scheme. By Lemma 6, it suffices to prove that 2i(c−1) ≥ ci
whenever c ≥ 3. Taking logarithms on both sides yields c − 1 ≥ log2(c), which
holds for all c ≥ 2. ut

In order to illustrate the previous results, Figures 1 and 2 present the
makespan and average waiting times respectively for one-to-one and
one-to-many strategies in representative cases.
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Fig. 1. Makespan as a function of the size of the system N , for c ∈ {1, . . . , 10}).

Lemma 8 (Local Replacement). If we are given a strategy where some peer
x forwards the message to k new peers in a given time-slot [t, t + T ], and there
exists an alternative strategy where x forwards the message to k′ > k peers in
the same time-slot, then the local replacement for the alternative strategy in x
reduces both the makespan and average waiting time if all the k′ nodes behave as
in the original strategy.

Proof. During the specific time-slot [t, t + T ], the message is fully owned by
more peers. By Lemma 6, the local replacement has lower average waiting time.
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Fig. 2. Average waiting time as a function of the size of the system N , for c ∈
{1, . . . , 10}).

Analogously, there are more successors of x, so they feed more peers and the
makespan is lower as well. ut

Theorem 1 (Main Result). The one-to-one forwarding scheme is optimal for
both the MPTPM and the MPTPWT.

Proof. If some peer deliberately produces a positive delay in the forwarding,
there is a corresponding shift in both makespan and average waiting time.
Therefore, delays are not included in an optimal strategy. If some peer x
forwards the message to c − 1 > 1 nodes, we can consider a local replacement
into the one-to-one strategy for x. By Lemmas 5 and 7, the one-to-one
forwarding scheme offers lower makespan and average waiting times. By
Lemma 8, a local replacement improves both measures. A local replacement is
conducted in every node that forwards the message to many nodes. The result
is a one-to-one forwarding scheme. ut

It is worth to mention that a historical problem from telephonic services is the
Minimum Broadcast Time or MBT for short [5]. In the MBT, we are given a
simple graph, and a target node which owns the message. The goal is to select
a forwarding one-to-one strategy, in order to minimize the broadcast time (i.e.,
the makespan). Observe that we studied complete networks. However, the
makespan in an arbitrary simple (non-complete) graph is extremely
challenging. In fact, the problem is formally known as the Minimum Broadcast



Time (MBT), and it belongs to the class of NP-Complete problems [6]. The
MBT is equivalent to find a spanning tree rooted at the holder of the message
with the minimum makespan. The hardness of the MBT promotes the
development of metaheuristics. In particular, a Greedy randomized heuristic is
already available in the literature, together with an efficient Integer Linear
Programming (ILP) formulation for the MBT [4]. In the following result, we
consider the MPTPM for general, for non-complete networks, here called
MPTPMNC:

Theorem 2. Finding the optimal strategy for the MPTPMNC belongs to the
class of NP-Hard problems.

Proof. Consider the MPTPMNC in general, for an arbitrary graph G and target
node v. By an iterative application of Lemma 8, a one-to-many strategy can by
replaced by a one-to-one strategy, minimizing the makespan. Then, the globally
optimum solution for the MPTPMNC is precisely the globally optimum solution
for the MBT. Then, the MPTPMNC is at least as hard as the MBT. Since the
latter belongs to the class of NP-Hard problems [6], the result follows. ut

4 Discussion

As far as we know, the MPTPWT was posed for the first time by Yang and de
Veciana [13]. The authors study the service capacity of a file sharing peer-to-
peer system, and the problem under study serves as a fluid model for replication.
They literally state that it should be clear that a good strategy is the one-to-one
forwarding scheme. For practical purposes they find a closed formula for the
average waiting time following a one-to-one forwarding scheme when N is a
power of two. In [9], a formal proof of Lemma 7 is provided when the population
is a power of two. Here, we formally prove that it is not only good, but also
optimal, for both makespan and waiting time measures (this is, for the MPTPM
as well). The result holds for an arbitrary population size.

Theorem 1 is counterintuitive, and could be used in several fields of
knowledge. For instance, the earliest-finish-time in the context of parallel
computing systems is precisely our makespan, and forwarding strategies are
identified with a formal scheduling on this machines [1, 11]. The main goal in a
Content Delivery Network is to minimize the delivery time, which is strictly
related with makespan and average waiting time [8, 7, 12]. The time needed to
distribute information in a social network, or a virus by an epidemic, are one of
the main factors studied in these disciplines [10, 3]. Several real networks use
one-to-many forwarding schemes. This fact suggests that in practice at least
one assumption does not hold. First, we remark that full connectivity holds in
overlay networks, but does not hold in most real-life scenarios, such as social
networks. Second, there is no matching between modelling and reality when
identical capacity is assumed. Last but not least, in an information-centric
network the behaviour of nodes could be affected with information.



5 Conclusions and Trends for Future Work

In this paper we show that a one-to-one forwarding scheme provides both the
lowest makespan and average waiting time, under complete homogeneous
networks. The merit of this strategy was suggested by previous authors in the
context of peer-to-peer systems for average waiting times. Forwarding schemes
have a direct implication in many different contexts, such as scheduling in
parallel unrelated machines, social networks and content delivery networks. As
a future work, we would like to extend our analysis to incomplete graphs with
heterogeneous and dynamic nodes. Observe that the optimum forwarding
scheme is completely deterministic. Furthermore, we would like to better
understand the gap between the theoretical predictions from this paper and
real-life applications such as social networks and cellular systems.
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